Résumé

Dual Methods for Optimal Transport

Métriques

110
7
3.95 Mo
 application/pdf
bitcache://b5305f5fdc9f0e548161a67e99ffd45cbae89541

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Sponsors scientifique

logo_smf_cmjn.gif

Sponsors financier

logo_gdr-mia.png
logo_inria.png
image010.png
logothales.jpg

Sponsors logistique

logo-minesparistech.jpg
logo-universite-paris-sud.jpg
logo_supelec.png
Séminaire Léon Brillouin Logo
logo_cnrs_2.jpg
logo_ircam.png
logo_imb.png
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/2552/4869</identifier><creators><creator><creatorName>Quentin Mérigot</creatorName></creator></creators><titles>
            <title>Dual Methods for Optimal Transport</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2013</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Mon 16 Sep 2013</date>
	    <date dateType="Updated">Mon 25 Jul 2016</date>
            <date dateType="Submitted">Fri 27 Apr 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">b5305f5fdc9f0e548161a67e99ffd45cbae89541</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>25098</version>
        <descriptions>
            <description descriptionType="Abstract"></description>
        </descriptions>
    </resource>
.

1 Dual Methods for Optimal Transport Quentin M´erigot Geometric Science of Information 2013, Paris August 28, 2013 LJK / CNRS / Universit´e de Grenoble 2 Computational optimal transport For αi, βj = 1: Hungarian algorithm linear programming General αi, βj: Bertsekas’ auction algorithm αi βj 2 Computational optimal transport For αi, βj = 1: Hungarian algorithm linear programming General αi, βj: Bertsekas’ auction algorithm αi βj Source and target with density: Benamou-Brenier ’00 Loeper-Rapetti ’05 Angenent-Haker-Tannenbaum ’03 Benamou-Froese-Oberman ’12 2 Computational optimal transport For αi, βj = 1: Hungarian algorithm linear programming General αi, βj: Bertsekas’ auction algorithm αi βj Source with density, finite target: Aurenhammer, Hoffmann, Aronov ’98 Oliker-Prussner ’89 Caffarelli-Kochengin-Oliker ’04 Kitagawa ’12 Source and target with density: Benamou-Brenier ’00 Loeper-Rapetti ’05 Angenent-Haker-Tannenbaum ’03 Benamou-Froese-Oberman ’12 3 Optimal transport: Monge’s problem µ = probability measure on X ν = prob. measure on finite Y Monge problem: Tc(µ, ν) := min{Cc(T); T#µ = ν} y with density, X