Semi-Discrete Optimal Transport in Patch Space for Enriching Gaussian Textures

07/11/2017
Publication GSI2017
OAI : oai:www.see.asso.fr:17410:22616
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit
 

Résumé

A bilevel texture model is proposed, based on a local transform of a Gaussian random field. The core of this method relies on the optimal transport of a continuous Gaussian distribution towards the discrete exemplar patch distribution. The synthesis then simply consists in a fast post-processing of a Gaussian texture sample, boiling down to an improved nearest-neighbor patch matching, while offering theoretical guarantees on statistical compliancy.

Semi-Discrete Optimal Transport in Patch Space for Enriching Gaussian Textures

Collection

application/pdf Semi-Discrete Optimal Transport in Patch Space for Enriching Gaussian Textures Bruno Galerne, Arthur Leclaire, Julien Rabin
Détails de l'article
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit

A bilevel texture model is proposed, based on a local transform of a Gaussian random field. The core of this method relies on the optimal transport of a continuous Gaussian distribution towards the discrete exemplar patch distribution. The synthesis then simply consists in a fast post-processing of a Gaussian texture sample, boiling down to an improved nearest-neighbor patch matching, while offering theoretical guarantees on statistical compliancy.
Semi-Discrete Optimal Transport in Patch Space for Enriching Gaussian Textures
application/pdf Semi-Discrete Optimal Transport in Patch Space for Enriching Gaussian Textures (slides)

Média

Voir la vidéo

Métriques

0
0
1.83 Mo
 application/pdf
bitcache://f1836f7891510c4458058c82597656ac7ee2d24a

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Sponsors Platine

alanturinginstitutelogo.png
logothales.jpg

Sponsors Bronze

logo_enac-bleuok.jpg
imag150x185_couleur_rvb.jpg

Sponsors scientifique

logo_smf_cmjn.gif

Sponsors

smai.png
gdrmia_logo.png
gdr_geosto_logo.png
gdr-isis.png
logo-minesparistech.jpg
logo_x.jpeg
springer-logo.png
logo-psl.png

Organisateurs

logo_see.gif
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/17410/22616</identifier><creators><creator><creatorName>Julien Rabin</creatorName></creator><creator><creatorName>Bruno Galerne</creatorName></creator><creator><creatorName>Arthur Leclaire</creatorName></creator></creators><titles>
            <title>Semi-Discrete Optimal Transport in Patch Space for Enriching Gaussian Textures</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2018</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><subjects><subject>Optimal transport</subject><subject>texture synthesis</subject><subject>patch distribution</subject></subjects><dates>
	    <date dateType="Created">Fri 9 Mar 2018</date>
	    <date dateType="Updated">Fri 9 Mar 2018</date>
            <date dateType="Submitted">Tue 13 Nov 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">f1836f7891510c4458058c82597656ac7ee2d24a</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>37364</version>
        <descriptions>
            <description descriptionType="Abstract">A bilevel texture model is proposed, based on a local transform of a Gaussian random field. The core of this method relies on the optimal transport of a continuous Gaussian distribution towards the discrete exemplar patch distribution. The synthesis then simply consists in a fast post-processing of a Gaussian texture sample, boiling down to an improved nearest-neighbor patch matching, while offering theoretical guarantees on statistical compliancy.
</description>
        </descriptions>
    </resource>
.