Shape analysis on Lie groups and homogeneous spaces

07/11/2017
Publication GSI2017
OAI : oai:www.see.asso.fr:17410:22578
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit
 

Résumé

In this paper we are concerned with the approach to shape analysis based on the so called Square Root Velocity Transform (SRVT).
We propose a generalisation of the SRVT from Euclidean spaces to shape spaces of curves on Lie groups and on homogeneous manifolds. The main idea behind our approach is to exploit the geometry of the natural Lie
group actions on these spaces.

Shape analysis on Lie groups and homogeneous spaces

Collection

application/pdf Shape analysis on Lie groups and homogeneous spaces Elena Celledoni, Sølve Eidnes, Markus Eslitzbichler, Alexander Schmeding
Détails de l'article
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit

In this paper we are concerned with the approach to shape analysis based on the so called Square Root Velocity Transform (SRVT).
We propose a generalisation of the SRVT from Euclidean spaces to shape spaces of curves on Lie groups and on homogeneous manifolds. The main idea behind our approach is to exploit the geometry of the natural Lie
group actions on these spaces.
Shape analysis on Lie groups and homogeneous spaces

Média

Voir la vidéo

Métriques

0
0
2.22 Mo
 application/pdf
bitcache://68ceb04dac9365ba7dcb01f96df41f04b7d490ec

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Sponsors Platine

alanturinginstitutelogo.png
logothales.jpg

Sponsors Bronze

logo_enac-bleuok.jpg
imag150x185_couleur_rvb.jpg

Sponsors scientifique

logo_smf_cmjn.gif

Sponsors

smai.png
gdrmia_logo.png
gdr_geosto_logo.png
gdr-isis.png
logo-minesparistech.jpg
logo_x.jpeg
springer-logo.png
logo-psl.png

Organisateurs

logo_see.gif
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/17410/22578</identifier><creators><creator><creatorName>Elena Celledoni</creatorName></creator><creator><creatorName>Sølve Eidnes</creatorName></creator><creator><creatorName>Markus Eslitzbichler</creatorName></creator><creator><creatorName>Alexander Schmeding</creatorName></creator></creators><titles>
            <title>Shape analysis on Lie groups and homogeneous spaces</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2018</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><subjects><subject>Lie group</subject><subject>Shape analysis</subject><subject>homogeneous spaces</subject><subject>SRVT</subject></subjects><dates>
	    <date dateType="Created">Thu 8 Mar 2018</date>
	    <date dateType="Updated">Thu 8 Mar 2018</date>
            <date dateType="Submitted">Mon 19 Nov 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">68ceb04dac9365ba7dcb01f96df41f04b7d490ec</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>37299</version>
        <descriptions>
            <description descriptionType="Abstract">In this paper we are concerned with the approach to shape analysis based on the so called Square Root Velocity Transform (SRVT).<br />
We propose a generalisation of the SRVT from Euclidean spaces to shape spaces of curves on Lie groups and on homogeneous manifolds. The main idea behind our approach is to exploit the geometry of the natural Lie<br />
group actions on these spaces.
</description>
        </descriptions>
    </resource>
.