Optimal matching between curves in a manifold

07/11/2017
Publication GSI2017
OAI : oai:www.see.asso.fr:17410:22575
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit
 

Résumé

This paper is concerned with the computation of an optimal matching between two manifold-valued curves. Curves are seen as elements of an infinite-dimensional manifold and compared using a Riemannian metric that is invariant under the action of the reparameterization group. This group induces a quotient structure classically interpreted as the "shape space". We introduce a simple algorithm allowing to compute geodesics of the quotient shape space using a canonical decomposition of a path in the associated principal bundle. We consider the particular case of elastic metrics and show simulations for open curves in the plane, the hyperbolic plane and the sphere.

Optimal matching between curves in a manifold

Collection

application/pdf Optimal matching between curves in a manifold Alice Le Brigant, Marc Arnaudon, Frédéric Barbaresco
Détails de l'article
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit

Optimal matching between curves in a manifold

Média

Voir la vidéo

Métriques

0
0
2.07 Mo
 application/pdf
bitcache://928c402b8e4b0e7c6026ca9a415873bda7c7bc8c

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Sponsors Platine

alanturinginstitutelogo.png
logothales.jpg

Sponsors Bronze

logo_enac-bleuok.jpg
imag150x185_couleur_rvb.jpg

Sponsors scientifique

logo_smf_cmjn.gif

Sponsors

smai.png
logo_gdr-mia.png
gdr_geosto_logo.png
gdr-isis.png
logo-minesparistech.jpg
logo_x.jpeg
springer-logo.png
logo-psl.png

Organisateurs

logo_see.gif
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/17410/22575</identifier><creators><creator><creatorName>Frédéric Barbaresco</creatorName></creator><creator><creatorName>Marc Arnaudon</creatorName></creator><creator><creatorName>Alice Le Brigant</creatorName></creator></creators><titles>
            <title>Optimal matching between curves in a manifold</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2018</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><subjects><subject>optimal matching</subject><subject>manifold-valued curves</subject><subject>elastic metric</subject></subjects><dates>
	    <date dateType="Created">Thu 8 Mar 2018</date>
	    <date dateType="Updated">Thu 8 Mar 2018</date>
            <date dateType="Submitted">Fri 20 Apr 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">928c402b8e4b0e7c6026ca9a415873bda7c7bc8c</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>37296</version>
        <descriptions>
            <description descriptionType="Abstract">This paper is concerned with the computation of an optimal matching between two manifold-valued curves. Curves are seen as elements of an infinite-dimensional manifold and compared using a Riemannian metric that is invariant under the action of the reparameterization group. This group induces a quotient structure classically interpreted as the "shape space". We introduce a simple algorithm allowing to compute geodesics of the quotient shape space using a canonical decomposition of a path in the associated principal bundle. We consider the particular case of elastic metrics and show simulations for open curves in the plane, the hyperbolic plane and the sphere.
</description>
        </descriptions>
    </resource>
.