Sample-limited Lp Barycentric Subspace Analysis on Constant Curvature Spaces

07/11/2017
Auteurs : Xavier Pennec
Publication GSI2017
OAI : oai:www.see.asso.fr:17410:22571
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit
 

Résumé

Generalizing Principal Component Analysis (PCA) to manifolds is pivotal for many statistical applications on geometric data. We rely in this paper on barycentric subspaces, implicitly de ned as the locus of points which are weighted means of k + 1 reference points [8, 9].
Barycentric subspaces can naturally be nested and allow the construction of inductive forward or backward nested subspaces approximating data points. We can also consider the whole hierarchy of embedded barycentric subspaces de ned by an ordered series of points in the manifold (a flag of affine spans): optimizing the accumulated unexplained variance (AUV) over all the subspaces actually generalizes PCA to non Euclidean spaces, a procedure named Barycentric Subspaces Analysis (BSA).
In this paper, we rst investigate sample-limited inference algorithms where the optimization is limited to the actual data points: this transforms a general optimization into a simple enumeration problem. Second, we propose to robustify the criterion by considering the unexplained p-variance of the residuals instead of the classical 2-variance. This construction is very natural with barycentric subspaces since the affine span is stable under the choice of the value of p. The proposed algorithms are illustrated on examples in constant curvature spaces: optimizing the (accumulated) unexplained p-variance (Lp PBS and BSA) for 0 < p ≤ 1 can identify reference points in clusters of a few points within a large number of random points in spheres and hyperbolic spaces.

Sample-limited Lp Barycentric Subspace Analysis on Constant Curvature Spaces

Collection

application/pdf Sample-limited Lp Barycentric Subspace Analysis on Constant Curvature Spaces Xavier Pennec
Détails de l'article
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit

Generalizing Principal Component Analysis (PCA) to manifolds is pivotal for many statistical applications on geometric data. We rely in this paper on barycentric subspaces, implicitly de ned as the locus of points which are weighted means of k + 1 reference points [8, 9].
Barycentric subspaces can naturally be nested and allow the construction of inductive forward or backward nested subspaces approximating data points. We can also consider the whole hierarchy of embedded barycentric subspaces de ned by an ordered series of points in the manifold (a flag of affine spans): optimizing the accumulated unexplained variance (AUV) over all the subspaces actually generalizes PCA to non Euclidean spaces, a procedure named Barycentric Subspaces Analysis (BSA).
In this paper, we rst investigate sample-limited inference algorithms where the optimization is limited to the actual data points: this transforms a general optimization into a simple enumeration problem. Second, we propose to robustify the criterion by considering the unexplained p-variance of the residuals instead of the classical 2-variance. This construction is very natural with barycentric subspaces since the affine span is stable under the choice of the value of p. The proposed algorithms are illustrated on examples in constant curvature spaces: optimizing the (accumulated) unexplained p-variance (Lp PBS and BSA) for 0 < p ≤ 1 can identify reference points in clusters of a few points within a large number of random points in spheres and hyperbolic spaces.
Sample-limited Lp Barycentric Subspace Analysis on Constant Curvature Spaces

Média

Voir la vidéo

Métriques

0
0
1.59 Mo
 application/pdf
bitcache://44237613d22ba589e2cf8ad3a43b41cf1b3912ce

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Sponsors Platine

alanturinginstitutelogo.png
logothales.jpg

Sponsors Bronze

logo_enac-bleuok.jpg
imag150x185_couleur_rvb.jpg

Sponsors scientifique

logo_smf_cmjn.gif

Sponsors

smai.png
gdrmia_logo.png
gdr_geosto_logo.png
gdr-isis.png
logo-minesparistech.jpg
logo_x.jpeg
springer-logo.png
logo-psl.png

Organisateurs

logo_see.gif
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/17410/22571</identifier><creators><creator><creatorName>Xavier Pennec</creatorName></creator></creators><titles>
            <title>Sample-limited Lp Barycentric Subspace Analysis on Constant Curvature Spaces</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2018</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Thu 8 Mar 2018</date>
	    <date dateType="Updated">Thu 8 Mar 2018</date>
            <date dateType="Submitted">Mon 10 Dec 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">44237613d22ba589e2cf8ad3a43b41cf1b3912ce</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>37292</version>
        <descriptions>
            <description descriptionType="Abstract">
Generalizing Principal Component Analysis (PCA) to manifolds is pivotal for many statistical applications on geometric data. We rely in this paper on barycentric subspaces, implicitly de ned as the locus of points which are weighted means of k + 1 reference points [8, 9].<br />
Barycentric subspaces can naturally be nested and allow the construction of inductive forward or backward nested subspaces approximating data points. We can also consider the whole hierarchy of embedded barycentric subspaces de ned by an ordered series of points in the manifold (a flag of affine spans): optimizing the accumulated unexplained variance (AUV) over all the subspaces actually generalizes PCA to non Euclidean spaces, a procedure named Barycentric Subspaces Analysis (BSA).

In this paper, we rst investigate sample-limited inference algorithms where the optimization is limited to the actual data points: this transforms a general optimization into a simple enumeration problem. Second, we propose to robustify the criterion by considering the unexplained p-variance of the residuals instead of the classical 2-variance. This construction is very natural with barycentric subspaces since the affine span is stable under the choice of the value of p. The proposed algorithms are illustrated on examples in constant curvature spaces: optimizing the (accumulated) unexplained p-variance (Lp PBS and BSA) for 0 < p ≤ 1 can identify reference points in clusters of a few points within a large number of random points in spheres and hyperbolic spaces.

</description>
        </descriptions>
    </resource>
.