Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs

07/11/2017
Publication GSI2017
OAI : oai:www.see.asso.fr:17410:22524
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit
 

Résumé

Recently, there has been a strong ambition to translate models and algorithms from traditional image processing to non-Euclidean domains, e.g., to manifold-valued data. While the task of denoising has been extensively studied in the last years, there was rarely an attempt to perform image inpainting on manifold-valued data. In this paper we present a nonlocal inpainting method for manifold-valued data given on a nite weighted graph. We introduce a new graph in nity-Laplace operator based on the idea of discrete minimizing Lipschitz extensions, which we use to formulate the inpainting problem as PDE on the graph. 
Furthermore, we derive an explicit numerical solving scheme, which we evaluate on two classes of synthetic manifold-valued images.

Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs

Collection

application/pdf Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs Ronny Bergmann, Daniel Tenbrinck
Détails de l'article
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit

Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs
application/pdf Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs (slides)

Média

Voir la vidéo

Métriques

0
0
3.92 Mo
 application/pdf
bitcache://45f9d5d2e2d5b3505a4831bfd72e06af15f6e1d9

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Sponsors Platine

alanturinginstitutelogo.png
logothales.jpg

Sponsors Bronze

logo_enac-bleuok.jpg
imag150x185_couleur_rvb.jpg

Sponsors scientifique

logo_smf_cmjn.gif

Sponsors

smai.png
logo_gdr-mia.png
gdr_geosto_logo.png
gdr-isis.png
logo-minesparistech.jpg
logo_x.jpeg
springer-logo.png
logo-psl.png

Organisateurs

logo_see.gif
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/17410/22524</identifier><creators><creator><creatorName>Ronny Bergmann</creatorName></creator><creator><creatorName>Daniel Tenbrinck</creatorName></creator></creators><titles>
            <title>Nonlocal Inpainting of Manifold-valued Data on Finite Weighted Graphs</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2018</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Wed 7 Mar 2018</date>
	    <date dateType="Updated">Wed 7 Mar 2018</date>
            <date dateType="Submitted">Mon 15 Oct 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">45f9d5d2e2d5b3505a4831bfd72e06af15f6e1d9</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>37233</version>
        <descriptions>
            <description descriptionType="Abstract">Recently, there has been a strong ambition to translate models and algorithms from traditional image processing to non-Euclidean domains, e.g., to manifold-valued data. While the task of denoising has been extensively studied in the last years, there was rarely an attempt to perform image inpainting on manifold-valued data. In this paper we present a nonlocal inpainting method for manifold-valued data given on a nite weighted graph. We introduce a new graph in nity-Laplace operator based on the idea of discrete minimizing Lipschitz extensions, which we use to formulate the inpainting problem as PDE on the graph. <br />
Furthermore, we derive an explicit numerical solving scheme, which we evaluate on two classes of synthetic manifold-valued images.
</description>
        </descriptions>
    </resource>
.