Simple hybrid propulsion model for hybrid aircraft design space exploration

03/02/2015
OAI : oai:www.see.asso.fr:10638:20122
DOI :
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit
 

Résumé

Simple hybrid propulsion model for hybrid aircraft design space exploration

Collection

application/pdf Simple hybrid propulsion model for hybrid aircraft design space exploration Mathieu Belleville
Détails de l'article
contenu protégé  Document accessible sous conditions - vous devez vous connecter ou vous enregistrer pour accéder à ou acquérir ce document.
- Accès libre pour les ayants-droit

Simple hybrid propulsion model for hybrid aircraft design space exploration

Métriques

7
4
914.52 Ko
 application/pdf
bitcache://8a53849aa514f1cb48563116c48e2d4952ca3f27

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Organisateurs

logoaaaf-05_162x120.jpg
logo_see.gif

Sponsors

airbus.jpg
logo_safran_lps_grand.png
logo-aero-def-fd-blanc.jpg
logoirtsaintexupery.jpg
logo_onera.jpg
logotoulousemetropole.jpg
craquitaine.jpg
crmip.jpg
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/10638/20122</identifier><creators><creator><creatorName>Mathieu Belleville</creatorName></creator></creators><titles>
            <title>Simple hybrid propulsion model for hybrid aircraft design space exploration</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2017</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sun 1 Oct 2017</date>
	    <date dateType="Updated">Sun 1 Oct 2017</date>
            <date dateType="Submitted">Mon 10 Dec 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">8a53849aa514f1cb48563116c48e2d4952ca3f27</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>34143</version>
        <descriptions>
            <description descriptionType="Abstract"></description>
        </descriptions>
    </resource>
.

Simple hybrid propulsion model for hybrid aircraft design space exploration Mathieu BELLEVILLE 1 : AIRBUS Operations S.A.S., B.P. M01 11/1, 316 route de Bayonne, 31060 Toulouse Cedex 9, mathieu.belleville@airbus.com Abstract This article introduces a semi-empirical model for an electric fan and a minimalistic model for a turbofan. The electric fan model provides an easy selection of optimal characteristics based on power loading. The turbofan model has provision for power extraction, and exhibit a physical behaviour. These two models allowed exploring the performance of a hybrid-electric aircraft featuring two turbofans under the wing and one electric fan at the rear of the fuselage. Associated with a proper energy management, such a hybrid aircraft may prove to be competitive if the power to weight ratio of the electric machines reaches 8 kW/kg and the energy density of the batteries reaches 540 Wh/kg. Introduction A hybrid electric propulsion system adds many optimization parameters to the aircraft, such as the amount of electric-driven thrust relative to the total thrust, the capacity of the batteries, and how and when is the electric propulsor used. To allow for rapid exploration of the design space and accurate selection of the most promising solution, we need to have simple semi-empirical models of the components making the propulsion chain components. This article presents two of these models, the electric fan and the simplistic turbofan, as well as a first exploration performed on a three-engine hybrid aircraft configuration. Notations BPR Bypass ratio D Fan diameter (m) Fn Net thrust (N) M Flight Mach number P Pressure Pw Power (W) T Temperature V Flight speed (m/s) x Shaft speed ratio γ Heat capacity ratio (1.4) η Efficiency π Pressure ratio τ Temperature ratio subscripts 0 infinite upstream des design i total f fan, including inlet and exhaust n net pol polytropic r ram (total to static, station 0) Electric Fan model One of the main components of a future hybrid- electric aircraft will be an electric fan. The efficiency of the electric propulsor can be defined as: