Commande LQG multimodèle d’une turbine éolienne à vitesse variable

30/09/2017
Publication e-STA e-STA 2005-4
OAI : oai:www.see.asso.fr:545:2005-4:20001
DOI :

Résumé

Commande LQG multimodèle d’une turbine éolienne à vitesse variable

Métriques

35
12
498.76 Ko
 application/pdf
bitcache://475445bf5ddf745768172e57b95510647ea184cc

Licence

Creative Commons Aucune (Tous droits réservés)
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/545:2005-4/20001</identifier><creators><creator><creatorName>Pierre Borne</creatorName></creator><creator><creatorName>Fabien Lescher</creatorName></creator><creator><creatorName>Jing Yun Zhao</creatorName></creator></creators><titles>
            <title>Commande LQG multimodèle d’une turbine éolienne à vitesse variable</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2017</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sat 30 Sep 2017</date>
	    <date dateType="Updated">Sat 30 Sep 2017</date>
            <date dateType="Submitted">Tue 13 Nov 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">475445bf5ddf745768172e57b95510647ea184cc</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>34015</version>
        <descriptions>
            <description descriptionType="Abstract"></description>
        </descriptions>
    </resource>
.

1 Commande LQG multimodèle d’une turbine éolienne à vitesse variable Fabien Lescher∗‡ , Pierre Borne‡ , Jing Yun Zhao∗ ∗ ERPA-EIGSI 26 rue Vaux Le Foletier, 17041 La Rochelle ‡ LAGIS-Ecole Centrale de Lille Cité Scientifique - BP 48 59651 Villeneuve d’Ascq Cedex E-mail: fabien.lescher@eigsi.fr, pierre.borne@ec-lille.fr Résumé: Cet article traite de la commande d’une tur- bine éolienne à vitesse variable et à régulation pitch. Le fonctionnement d’une turbine éolienne se décompose en plusieurs zones de fonctionnement suivant la vitesse du vent agissant sur la turbine, et les objectifs de com- mande du système sont différents pour chaque zone. Une structure de contrôle basée sur une représentation multimodèle de type Takagi-Sugeno est conçue pour prendre en compte les non linéarités du système et l’évolution des objectifs de contrôle au cours du fonc- tionnement de l’éolienne. Pour chaque sous modèle linéaire, un contrôleur LQG est calculé en réponse au problème de commande multivariable et multiobjectif. Mots clés: Energie éolienne, commande multimodèle, synthèse LQG. I. INTRODUCTION L’énergie éolienne s’affirme aujourd’hui comme la plus viable des énergies renouvelables et connaı̂t un fort développement dans le monde entier, malgré un coût de revient plus élevé que celui des sources d’énergie tradi- tionelles. Actuellement, plusieurs solutions sont envisage- ables en vue de diminuer ce coût, comme l’utilisation de lois de commande avancées, qui permettent d’améliorer sensiblement les performances d’une éolienne à vitesse variable. Les algorithmes de commande implantés visent à optimiser la conversion énergétique du système, et à réduire les charges mécaniques subies par la structure mécanique de l’éolienne en vue d’allonger la durée de vie du système [LEI 91]. Le fonctionnement d’une tur- bine éolienne à vitesse variable se décompose en plusieurs zones de fonctionnement, en fonction de la vitesse du vent agissant sur son rotor: pour les basses vitesses de vent, le principal objectif est de maximiser l’énergie re- cueillie par la turbine, alors que pour les vitesses de vent élevées, la puissance électrique produite doit être limitée et régulée à la puissance nominale du générateur. La puis- sance éolienne recueillie par la turbine dépend de façon fortement non linéaire d’une entrée externe, la vitesse du vent, de la vitesse de rotation de la turbine et de l’angle d’inclinaison des pales (angle de pitch). Le contrôleur doit donc adapter, en agissant sur le couple électromagnétique du générateur et sur l’actionneur pitch, la vitesse de rota- tion de la turbine et l’angle d’inclinaison des pales à la vitesse de vent agissant sur le rotor. Cette grandeur stochas- tique variant très rapidement dans le temps n’est mal- heureusement pas mesurable précisément, puisqu’il s’agit de l’énergie moyenne contenue dans le flux d’air traver- sant le rotor, et non de la vitesse du vent en un point. La meilleure façon de connaı̂tre cette grandeur est alors de l’estimer à partir du comportement de la turbine [LEI 00]. Le problème de la commande de la turbine éolienne est par conséquent un problème de commande multiobjec- tif d’un système multivariable, non linéaire et fortement dépendant d’un paramètre stochastique non mesurable, la vitesse du vent. En réponse à ce problème de nom- breuses types de contrôleurs ont été utilisés, comme des controleurs PI à gains fixes ou séquencés [CAR 96], ou des controleurs basés sur la logique floue [VIH 02]. Le principal inconvénient de ces méthodes est qu’elles ne garantissent pas un comportement optimal du système par rapport à un critère dépendant des différents objec- tifs de commande. Des techniques de commande op- timale comme la commande LQG (linéaire quadratique gaussienne)[EKE 97][MUN 05] ou de commande robuste minimisant un critère H∞ [BON 94][BIA 04] ont été développées à partir d’un modèle linéarisé du système sur une zone de fonctionnement. Dans cet article, on présente un contrôleur visant à améliorer la conversion d’énergie et à réduire les charges mécaniques s’exerçant sur le train de puissance sur la zone entière de fonctionnement de l’éolienne. Ce contrôleur est développé à partir d’une représentation multimodèle de la forme Takagi-Sugeno du système. Pour chaque modèle linéarisé sur la trajectoire de référence du système, on établit une loi de commande optimale LQG multivariable minimisant un critère quadratique dépendant des différents objectifs de commande et prenant en compte les propriétés stochastiques de la vitesse du vent. La commande ap- pliquée au système est alors obtenue par l’interpolation des commandes calculées par les différents contrôleurs. L’article est organisé de la manière suivante: on décrit tout d’abord le modèle de l’éolienne étudiée, ainsi que la stratégie de commande mise en oeuvre. La méthode de synthèse du contrôleur est ensuite présentée. Les per- formances du contrôleur sont finalement comparées avec celles d’un contrôleur classique à partir de résultats de sim- ulation. II. MODÉLISATION DU SYSTÈME La Figure 1 représente la structure d’une chaı̂ne de conver- sion d’énergie éolienne. Une modélisation de chacun des sous ensembles constituant le système est donc effectuée. Fig. 1. Structure d’une chaı̂ne de conversion éolienne. La vitesse du vent en un point fixe de l’espace a des caractéristiques connus dans le domaine fréquentiel, représentées par le spectre de van der Hoven (Figure2). Ce spectre met en évidence la présence de deux composantes: une composante variant très lentement représentant la valeur moyenne vm(t) du vent, et une composante de tur- bulence vt(t). Les propriétés de cette composante de haute fréquence peuvent être utilisées par le système de com- mande, et un modèle de son spectre de puissance est donné par von Karman [NIC 02][EKE 97]: Φv(ω) = K (1 + (Tvω)2) 5 6 (1) En vue de la synthèse d’une loi de commande, un modèle linéaire de la composante vt(t) est employé, constitué par un filtre du premier ordre excité par un bruit blanc mv(t) [EKE 97]: ˙ vt = − 1 Tv vt(t) + mv(t) (2) Le spectre de puissance correspondant à ce modèle linéaire est: Φv(ω) = K (1 + (Tvω)2) (3) et représente une approximation suffisante de (1). La con- stante de temps Tv du modèle (2) et la variance du bruit mv(t) dépendent de la vitesse moyenne du vent vm et de caractéristiques spécifiques au site d’implantation de l’éolienne [NIC 02]: Tv = L vm σm = kσ,vvm Fig. 2. Spectre de la vitesse du vent. Fig. 3. Coefficient de puissance Cp(λ, β). La puissance mécanique Paero recueillie par la turbine est fonction de la densité volumique de l’air ρ, de la vitesse du vent v et du coefficient de puissance Cp: Paero = 1 2 ρπR2 v3 Cp (4) avec R le rayon du rotor. Le coefficient de puissance Cp est une fonction non linéaire (Figure 3) de l’angle d’inclinaison des pales β et du rapport λ entre la vitesse périphérique des pales et la vitesse du vent: λ = ωT R v (5) avec ωT la vitesse de rotation du rotor. Le coefficient de puissance Cp(λ, β) de l’éolienne con- sidérée, représentée Figure 3, est modélisée sous forme d’un polynôme de deux variables: Cp(λ, β) = X i,j=1..4 aijλi βj (6) Fig. 4. Modèle d’arbre à deux inerties La flexibilité de l’arbre mécanique reliant le rotor au générateur est prise en compte dans le modèle: en effet, les dynamiques structurelles de l’arbre de transmission flex- ible peuvent donner lieu à des phénomènes d’oscillation du couple de torsion de l’arbre à une fréquence de résonance, ce qui peut entraı̂ner une augmentation des charges mécaniques qu’il subit [PET 02][BUR 01]. Pour rendre compte de ce phénomène, l’arbre de transmission flexible est représenté par un modèle à deux inerties (Fig- ure 4) connectées par un ressort et un amortisseur. Le com- portement mécanique de l’arbre de transmission est alors décrit par:    JT ω̇T = Taero − fT ωT − TD JGω̇G = TD − fGωG − TG TD = d(ωT − ωG) + k(θT − θG) (7) La partie électrique du système correspondant au générateur et à son module de commande associé n’est pas modélisée: en effet, les dynamiques de réponse de la partie électrique sont beaucoup plus rapides que celles de la partie mécanique, et par conséquent, et à la vue des objectifs de cette étude, elles sont négligées. Le couple électromagnétique TG du générateur est donc considéré égal à sa valeur de consigne TG,ref . L’actionneur pitch représente le système mécanique et hydraulique qui permet aux pales de tourner autour de leur axe longitudinal, afin de faire varier leur angle d’inclinaison par rapport au vent. Ce système est décrit par une fonction de transfert du premier ordre avec une satura- tion sur β et β̇ afin de rendre compte des limites physiques de l’actionneur. L’interconnection de ces différents sous systèmes est un système fortement non linéaire à cause de l’expression du couple aérodynamique Taero. Ce système global peut néanmoins être linéarisé autour d’un point de fonctionnement, en linéarisant l’expression du couple aérodynamique: ∆Taero = kω∆ωT + kv∆v + kβ∆β (8) L’opérateur ∆ correspond aux déviations des différentes grandeurs par rapport au point de linéarisation Si(xi, ui), et les coefficients kω, kv et kβ sont définis par: γωi = µ ∂Taero ∂ωT ¶ Si γvi = µ ∂Taero ∂v ¶ Si (9) γβi = µ ∂Taero ∂β ¶ Si Le modèle linéarisé du système autour du point de fonc- tionnement Si s’écrit alors sous forme d’équation d’état: ẋ = A∆x + B∆u + Gw (10) Les vecteurs d’état sont définis par: x =       ωT ωG TD β v       u = µ TG βref ¶ w = mv (11) et la matrice d’état A par:          1 JT (γωi − fT ) 0 − 1 JT 1 JT γβi 1 JT γvi 0 1 JG fG 1 JG 0 0 d+ k JT (γωi − fT ) −d− k JG fG k JT − k JG k JT γβi k JT γvi 0 0 0 − 1 Tb 0 0 0 0 0 − 1 Tv          avec: B =       0 0 − 1 JG 0 k JG 0 0 1 Tb 0 0       G =       0 0 0 0 1       III. SYNTHÈSE DU CONTRÔLEUR A. Stratégie de commande Le fonctionnement de l’éolienne se divise en plusieurs par- ties, suivant la vitesse du vent agissant sur le système, à l’intérieur desquelles les objectifs de comande sont différentes. Fig. 5. Evolution des principales grandeurs caractéristiques du système avec la vitesse du vent. Pour les basses vitesses de vent, v < v1, l’objectif est d’optimiser le rendement énergétique du système et donc de recueillir le maximum de puissance éolienne. Dans cette zone, appelée Charge Partielle 1, le système doit donc fonc- tionner à Cp(λ, β) = Cp,max. Pour ce faire, l’angle de calage des pales β est maintenu constant à βopt et λ est régulé à λopt en agissant sur le couple électromagnétique du générateur TG, qui permet de contrôler la vitesse de ro- tation de la turbine ωT en fonction de la vitesse du vent v. Pour des vitesses de vent plus élevées, v1 < v < v2, c’est à dire quand la vitesse de rotation ωT requise par la stratégie de commande précédente atteint la vitesse de rotation nom- inale du générateur, la stratégie de commande consiste à fonctionner à une vitesse de rotation fixe, en agissant sur le couple électromagnétique du générateur TG. On parle dans cette phase de fonctionnement en Charge Partielle 2. Pour v > v2, la turbine fonctionne en zone de Pleine Charge et la puissance produite doit être maintenue égale à la puissance nominale du générateur. La vitesse de rotation de la turbine est maintenue autour de la vitesse nominale du générateur et l’angle de calage des pales β est modifié afin de diminuer le coefficient de puissance Cp(λ, β). Le système de commande est dans cette phase multivariable, puisqu’il agit sur le couple du générateur et sur l’angle de calage des pales. D’autres contraintes que celles inhérentes à la technologie du générateur expliquent la limitation de la puissance lors de cette phase, comme la limitation du niveau sonore du bruit généré par les pales ou la limitation des charges sur la structure mécanique du système [BOS 01]. Les évolutions des différentes grandeurs mécaniques et électriques en fonction de la vitesse du vent sont représentées à la Figure 5. Le principal objectif de com- Fig. 6. Trajectoire de référence. mande est donc le suivi de ces courbes, qui garantit une conversion optimale de l’énergie éolienne. Le second ob- jectif est la minimisation de la fatigue mécanique subie par le train de puissance. Cet objectif peut être ramené à la réduction des fluctuations du couple de torsion TD de l’arbre. Ces deux objectifs sont opposés: en effet, la maximi- sation de la puissance recueillie par la turbine implique un changement instantané de la vitesse de rotation de la turbine en réponse à une variation de vent, et par conséquence une variation rapide du couple du générateur TG, qui provoque alors des fortes contraintes sur l’arbre. Le contrôleur synthétisé doit donc optimiser un compromis entre ces deux objectifs. B. Approche multimodèle A cause des non linéarités du système et des différents objectifs de commande, fonctions des points d’opération du système, une approche multimodèle est utilisée pour la synthèse du contrôleur. Le système est linéarisé autour de plusieurs points de fonctionnement Si(xi, ui) se situant sur la trajectoire optimale du système (Figure 6). C. Contrôleur optimal LQG La synthèse d’un contrôleur optimal par la commande LQG (linéaire quadratique gaussienne) est particulièrement bien adaptée au problème de la commande de la turbine éolienne. En effet, la synthèse LQG permet d’obtenir un comportement d’un système linéaire en boucle fermée op- timal pour un critère quadratique dépendant des différents objectifs de commande. De plus, la synthèse LQG prend en considération les propriétés stochastiques des perturba- tions affectant le système et des bruits de mesure, et donc les propriétés stochastiques de la composante turbulente de la vitesse du vent. Ainsi pour chaque point de linéarisation du modèle Si(xi, ui), un contrôleur LQG est synthétisé, composé d’un filtre de Kalman estimant l’état du modèle linéarisé ∆x̂ = x̂ − xi et d’un retour d’état ∆u = K∆x̂ (Figure 7). Le retour d’état K est calculé de manière à minimiser une fonction quadratique J, qui dépend des objectifs de commande, et est par conséquent différente selon les zones Fig. 7. Structure d’un contrôleur LQG d’opération du système. En Charge Partielle 1, le système doit évoluer à λ = λopt pour recueillir le maximum d’énergie éolienne. Le critère quadratique J s’écrit alors: J = Z T 0 ¡ q1∆λ(t)2 + q2∆TD(t)2 + r∆TG(t)2 ¢ dt (12) ∆λ(t) correspond à la quantité ∆λ(t) = λ(t) − λopt mul- tipliée par un filtre passe bas Wλ(s). De même ∆TD(t) correspond à la quantité ∆TD(t) = TD(t) − TD,i mul- tiplié par un filtre passe haut WTD (s). En effet, le suivi de la consigne λ = λopt en hautes fréquences n’est pas recommandé car il imposerait des variations brusques de la vitesse de la turbine, et donc des charges mécaniques im- portantes sur l’arbre. De même, le filtre passe haut WTD permet d’améliorer l’amortissement du système pour une gamme de fréquence élevée comprenant la fréquence de résonnance de l’arbre. En Charge Partielle 2, le système doit fonctionner à la vitesse de rotation nominale du générateur. Le critère quadratique s’écrit: J = Z T 0 ¡ q1∆ωT (t)2 + q2∆TD(t)2 + r∆TG(t)2 ¢ dt (13) ∆ωT (t) correspond à la variation de la vitesse de rotation filtrée par un filtre passe bas. En Pleine Charge, la puissance électrique de la turbine doit être régulée à la puissance nominale du générateur. Le coût quadratique à minimiser s’exprime: J = Z T 0 (q1∆Pelec(t)2 + q2∆TD(t)2 + r1∆TG(t)2 + r2∆βref (t)2 )dt (14) On peut alors montrer que dans chaque cas, on peut réécrire le critère quadratique J en fonction de l’état du système sous la forme: J = Z T 0 ¡ xT Qx + uT Ru + 2xT Su ¢ dt (15) qui correspond à la forme classique du critère quadratique pour la synthèse LQG. D. Interpolation des contrôleurs La commande globale à appliquer au système non linéaire est calculée à partir de l’interpolation des commandes déterminées par les différents correcteurs des modèles linéarisés. Une approche par la méthode de Takagi Sugeno est utilisée: basée sur une technique d’interpolation par logique floue, cette méthode assure des transitions douces entre les différentes régions d’opération, et évite les phénomènes de commutation brutale. Le système non linéaire global est considéré comme une somme pondérée des modèles linéarisés: ẋ(t) = N X i=1 µi(z(t))(Ai(x(t) − xi) + Bi(u(t) − ui) (16) z(t) est la variable de décision du système et les fonctions de pondération µi sont telles que µi(z(t)) ≥ 0, i = 1..N et PN i=1 µi(z(t)) = 1. La variable de décision z(t) doit permettre au contrôleur d’identifier le point de fonctionnement du système sur la trajectoire optimale. La vitesse du vent étant une variable d’état du système (11), elle est estimée pour chaque modèle linéarisé par le filtre de Kalman correspondant. L’estimée de la vitesse du vent v̂(t) est déterminée par l’interpolation des vitesses v̂i(t) calculées pour chaque modèle linéarisé. La variable de décision z(t) utilisée pour cette interpola- tion est l’estimée de la vitesse du vent v̂(t − τ) retardée d’une durée τ. Les fonctions de pondération utilisées sont représentées Figure 8. La commande globale u appliquée Fig. 8. Fonction de pondération µi(z) Fig. 9. Structure du contrôleur global au système non linéaire s’exprime alors: u(t) = N X i=1 µi(z(t)) (ui + Ki (∆x̂i(t))) (17) La structure de ce contrôleur LQG multimodèle est représentée Figure 9. E. Evaluation de la loi de commande Le système de commande proposé est validé par la simula- tion numérique, et ses performances sont comparées avec celles d’un contrôleur PI dans les zones de fonctionnement de l’éolienne correspondant aux basses vitesses de vent (Charge Partielle 1) et aux hautes vitesses de vent (Pleine Charge). Le modèle de turbine éolienne implanté dans le simulateur correspond à une éolienne de 1.2 MW à vitesse variable et régulation pitch. En Charge Partielle, le contrôleur PI est calculé à partir d’un modèle linéarisé de la turbine sur un point de fonc- tionnement et en tenant que sur la trajectoire de référence le couple aérodynamique recueilli par la turbine s’exprime: Taero = 1 2 ρπR5 Cp,opt λ3 opt ω2 T (18) La consigne ωT,ref est donc calculée à partir de l’estimée du couple aérodynamique T̂aero (Figure 10). Fig. 10. Structure du correcteur PI en Charge Partielle Fig. 11. Structure du correcteur PI en Pleine Charge La perte relative d’énergie capturée par la turbine par rap- port à l’énergie maximale capturée, c’est à dire en fonc- tionnant à chaque instant à Cp = Cp,opt, soumise aux mêmes conditions de vent est présentée Table I pour les deux contrôleurs considérés. Le rendement énergétique pour les deux contrôleurs est très élevé. Les courbes tem- porelles de la vitesse du vent, de la vitesse de rotation et du couple de torsion de l’arbre de transmission sont présentées Figure 12. Le contrôleur LQG présente donc, pour un ren- dement énergétique équivalent au contrôleur PI, des varia- tions du couple de torsion de l’arbre mécanique réduites. Pour la zone de fonctionnement correspondant aux vitesses de vent élevées, dite de Pleine Charge, la structure du contrôleur PI est présentée Figure 11. Ce contrôleur régule la puissance électrique générée en corrigeant la vitesse de rotation du générateur en agissant sur l’angle d’inclinaison des pales, en fixant la valeur du couple électromagnétique du générateur à sa valeur nominale TG,nom. Ce contrôleur est donc monovariable contraire- ment au contrôleur LQG proposé qui est multivariable dans cette phase. Les courbes temporelles de la vitesse de vent, de la puissance électrique générée, de l’angle d’inclinaison des pales et du couple de torsion de l’arbre de trans- Contrôleur Contrôleur LQG Contrôleur PI Perte relative 99.03 % 99.08 % TABLE I CHARGE PARTIELLE: PERTE RELATIVE D’ÉNERGIE RECUEILLIE Fig. 12. Charges partielles: Séries Temporelles: − contrôleur LQG, − contrôleur PI. Fig. 13. Pleine Charge: Séries Temporelles: − contrôleur LQG, − contrôleur PI. mission sont présentées Figure 13. Les variations de la puissance électrique autour de la puissance nominale de l’éolienne (1.2MW) sont plus réduites pour le contrôleur LQG. Les variations du couple de torsion de l’arbre sont plus élevées pour le contrôleur proposé. Néanmoins en analysant la Densité Spectrale de Puissance du couple de torsion (Figure 14), on constate que les fluctuations du cou- ple de torsion à la fréquence de résonnace, qui sont les plus dommageables pour l’arbre flexibe sont sensiblement les mêmes pour les deux contrôleurs. Des simulations pour une vitesse de vent couvrant les différentes plages de fonctionnement montrent le comportement du système lors de transitions entre les différentes phases (Figure 15). Fig. 14. Pleine Charge: Densité Spectrale de Puissance du couple de torsion: − contrôleur LQG, − contrôleur PI. Fig. 15. Simulation sur la totalité de la plage de fonctionnement IV. CONCLUSION Dans ce papier, on présente une structure de contrôle d’une turbine éolienne à vitesse variable dans sa plage entière de fonctionnement. Le contrôleur basé sur une représentation multimodèle prend en compte le caractère non linéaire du système et les différents objectifs de contrôle en fonction des zones de fonctionnement de la turbine. La technique de synthèse de commande LQG garantit un comportement op- timal du système autour d’un point de fonctionnement par rapport à un compromis entre plusieurs objectifs de com- mande. L’évaluation de la stratégie de commande proposée fait apparaı̂tre un meilleur comportement du système dans chaque zone de fonctionnement par rapport à un contrôleur classique, ainsi que de bonnes transitions entre les zones de fonctionnement. Cependant aucune garantie de performance ni de stabilité pour le système non linéaire global n’est assuré avec le contrôleur proposé. REFERENCES [BIA 04] BIANCHI F., MANTZ R., CHRISTIANSEN C., Power regulation in pitch controlled variable-speed WECS above rated wind speed, Renewable Energy, vol. 29, p. 1911-1922, 2004. [BON 94] BONGERS P., Modeling and Identification of Flexible Wind Turbines and a Factorizational Approach to Robust Control, PhD thesis, Delft University of Technology, 1994. [BOS 01] BOSSANYI E., The design of Closed Loop Controllers for Wind Turbines, in Wind Energy 2000, vol. 3, p. 149-163, 2001. [BUR 01] BURTON T., SHARPE D., JENKINS N., BOSSANYI E., Wind Energy Handbook, John Wiley & Sons, 2001. [CAR 96] CARDENAS R., Control of wind turbines using a switched reluctance generator, PhD thesis, University of Notting- ham, 1996. [EKE 97] EKELUND T., Modelling and linear quadratic optimal control of wind turbines, PhD thesis, Chalmers University of Technology, 1997. [LEI 91] LEITHEAD W., DE LA SALLE S., D.READON, Role and objectives for control of wind turbines, IEE Proceedings Part C, vol. 138, n2, p. 135-148, 1991. [LEI 00] LEITHEAD W., CONNOR B., Control of variable speed wind turbines: dynamic models, Int. Journal of Control, vol. 13, p. 1173-1188, 2000. [MUN 05] MUNTEANU I., CUTULULIS N., BRATCU A., CEANGA E., Optimization of variable speed wind power systems based on a LQG approach, Control Engineering Practice, vol. 13, p. 903-912, 2005. [NIC 02] NICHITA C., LUCA D., DAKYO B., CEANGA E., Large band simulation of the wind speed for real time wind turbine simulators, IEEE Transactions on Energy Conversion, vol. 17, 2002. [PET 02] PETRU T., THIRINGER T., Modeling of Wind Turbines for Power System Studies, IEEE Transactions on Power Systems, vol. 17, p. 1132-1139, 2002. [VIH 02] VIHRIALA H., Control of Variable Speed Wind Tur- bines, PhD thesis, Tampere University of Technology, 2002.