Solving RCPSP with resources production possibility by tasks

30/09/2017
Publication e-STA e-STA 2005-4
OAI : oai:www.see.asso.fr:545:2005-4:19998
DOI :

Résumé

Solving RCPSP with resources production possibility by tasks

Métriques

8
4
203.94 Ko
 application/pdf
bitcache://a468c42eb31257f2f51591158450ac66da70e1a6

Licence

Creative Commons Aucune (Tous droits réservés)
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/545:2005-4/19998</identifier><creators><creator><creatorName>H. Bouly</creatorName></creator><creator><creatorName>J. Carlier</creatorName></creator><creator><creatorName>A. Moukrim</creatorName></creator><creator><creatorName>M. Russo</creatorName></creator></creators><titles>
            <title>Solving RCPSP with resources production possibility by tasks</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2017</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sat 30 Sep 2017</date>
	    <date dateType="Updated">Sat 30 Sep 2017</date>
            <date dateType="Submitted">Fri 20 Apr 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">a468c42eb31257f2f51591158450ac66da70e1a6</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>34012</version>
        <descriptions>
            <description descriptionType="Abstract"></description>
        </descriptions>
    </resource>
.

! " ! # $ % ! $ ! ! "! #$%% & ' () ' * ' * (+ , -' # ! " # $ " % # " $ & ' ()* % " # + , # , , # " & . / 0 - / /1 2 3 ) / 2 " 4 3 ! 0 / / 5 / 5 3 0 52 6 2 5 2 3 7 0 / 2 0 / 5 / 5 6 / / 2 3 ) 0 * 5 0 / 7 0 / 2 5 8 3 5 2 0 & 0 0 " 3 9 6 , + & ' ()* :3 ; + 0 5 0 / 3 6 0 / 0 / 3 6 0 7 2 / 3 / 2 0 / / 2 / 3 0 2 0 < / 2 0 / 3 / $ 2 7 3 % ' 9 . 2 5 3 ' 5 2 3 5 5 / 1 0 / / 5 6 / 2 3 / / 2 1 5 5 3 0 . / = 9 3 ' 5 * 2 6 2 1 / 6 3 / / 2 & 333 2 * & 333 2 / 2 2 / 4 3 + + +≤ = ∑ 2 2 2 5 1 / 5 6 / 0 8 5 4 6 6 . ∈ = 0 = + 2 5 3 2 2 0 5 3 ! 2 0 / 7 0 / 22 / * 2 / 5 / 5 / 0 5 3 0 / 5 3 + * 2 * / 5 0 * / 5 3 0 2 7 0 / 2 0 = . = ∀ ∈ 0 0 / 0 3 . = ∀ ∈ ; 3 ) 2 0 > 7 3 )2 < / 2 53 9 / 8 2 5 / 2 5 / 3 2 22 / 5 / 2 0 / 3 9 0 2 3 9 2 / 2 2 2 2 5 0 2 3 3 δ δ = − − − 0 δ = 2 = ≥ = δ = 0 3 5 2 8 ! 7 > 1 > / ! > > 0 0 6 6 0 2 3 ( ( ) # % ; + ? @ 2 5 8 2 0 / / 3 5 3 α 2 2 0 5 0 3 2 1 ( ) ( ) { } & 333 α − = 0 5 / 2 5 0 ( ) & 333 π = 2 / 3 / / A α / 2 2 4 A 1 α α ∈ = ∪ 0 A π 5 3 / / A α / ( ) A A 0 . / α = ∪ 3 ; + 2 2 2 / 22 2 2 5 3 6 2 / 3 5 5 2 0 0 0 / / 2 0 5 3 2 / 2 3 5 2 0 ?&@ 1 / 8 2 / 2 2 0 5 3 / 2 0 2 2 5 / 2 / 2 3 + / 6 2 2 1 . = ∀ ∈ ∀ ∈ 6 B & 5 3 0 / 2 2 2 3 9 0 5 ?&@ 2 6 3 ! 2 / / 0 0 2 4 1 / / 2 / / 3 9 / 2 6 0 0 3 2 2 2 2 3 9 / / A α 5 2 0 = ≥ ∀ ∀ 3 6 2 ; + 2 2 5 3 = < 2 6 / 5 0 5 6 2 0 5 / 6 6 5 / 3 '6 6 / 2 2 3 ( * # % , + 0 5 / 5 3 ) 5 8 / / 2 6 / 3 5 / / 5 3 0 5 5 / / 8 5 / / / 2 5 2 / 2 5 3 5 0 5 3 5 2 6 / 2 2 / 3 ( ( + 0 0 2 / / 5 / * 2 3 0 2 / 2 2 5 8 3 ; + 2 0 2 / 3 ; / 2 2 5 2 0 ?:@ 2 / >'! 3 / / 3 ) 5 / 6 0 / / 1 3 + 2 2 3 9 / 2 * 2 5 / 5 2 3 ) 2 * 0 5 2 0 3 0 5 0 2 2 3 5 / 0 6 2 5 / 6 / 2 2 0 3 9 2 * 2 0 − 3 0 2 5 2 0 / 6 2 / / 3 2 / ; + 3 9 2 5 2 6 , + 3 9 / 2 5 2 0 4 2 5 2 3 − / 3 ! 2 5 / 2 * 3 - / 3 / 0 5 6 2 7 5 2 1 2 2 C2 0 / C 5 / 0 / 5 3 5 / 0 ; 3 , 5 2 0 2 2 22 2 D 2 3 + 2 2 5 6 , + 3 0 0 / 2 0 22 2 7 / 0 / 3 34 0 + ∈ ∈ » » 3 9 0 = := #= == 5 0 3 ' 2 2 2 0 0 3 9 5 2 2 & : ! ! ! < ! 0 0 3 / 2 22 2 2 / 5 2 2 4 D + ! 3 3 = − 0 ( ) & : < 3 ! ! ! ! = 3 6 0 , + 2 22 3 0 / / / 0 3 9 / 22 / 0 22 2 0 3 , 0 + & + : + < + & : < = 5 $ & : < := 5 $ & : < #= 5 $ & : < == 5 $ / 3 4 2 0 3 + & + : + < + & : < = 5 $ & : < := 5 $ & : < #= 5 $ & : < == 5 $ / 3/4 2 3 2 0 1 0 / 2 / / 3 / 22 3 , + 0 2 0 / :3& 6 3 0 / / 3 , - + / 0 / / 2 0 3 2 ; + 2 2 2 0 2 / 3 , + 2 2 / / 3 - 6 3 0 3 9 / / 2 ; + 3 / 6 / / 2 0 0 ; + 8 5 3 9 / 0 2 / , + 3 , + 2 / 5 3 * 3 / / 0 5 * 5 3 0 0 0 / 3 ! 0 , + 2 5 3 0 2 2 / 3 6 2 2 0 / / 0 0 ; + 3 0 2 2 / / 3 9 2 5 2 2 ; + 2 2 / 3 , . / / 5 3 34 / 2 2 22 / 5 2 3 / 8 6 0 2 2 / / / 4 5 / 2 0 3 34 A & 333 π = 2 2 5 / 2 5 / 2 2 4 [ ] [ ] D D 6 . 0 . 0 ∈ ∈ ∈ ∈ < ≤ 3 , ( + + 2 / 2 / 3 ; + 6 2 / / 5 3 / 5 ; + / 2 6 3 / 8 2 / 2 3 0 2 , + / 2 2 :3: 3 9 , + 2 / 2 / 2 2 0 5 2 / 3 )2 / 5 2 / / / 5 2 / ; + 2 0 / 2 2 3 0 , + / 5 2 2 2 3 / -0' % 9 5 0 22 2 / 3 2 2 0 2 3 2 , + 2 2 3 - 6 , + 0 0 / ; + 2 , + 2 3 9 6 0 2 2 6 3 9 / & 2 / 5 2 3 ! 2 / 5 2 0 & : ! ! ! < ! 2 5 2 0 / 2 0 < & 2 5 2 6 2 ; + 3 0 2 2 2 2 3 0 ! 3 / , + 2 2 / 3 2 / 0 , + 2 2 0 0 0 0 / :3 0 2 5 2 0 2 * 5 3 9 ! : ! 0 2 2 5 2 # 3 1 %% 2 0 5 2 / 5 2 2 / 5 8 /1 2 3 9 / 2 / 5 3 2 / 2 ; + 0 6 / / 0 6 2 5 3 9 2 0 2 2 2 0 2 / / 3 9 2 / 2 7 3 + 7 0 5 0 0 3 , 0 ! & ! & & : < = 5 $ & : < := 5 $ & : < #= 5 $ & : < == 5 $ / &4 2 / 3 + ? @ E3 , 4 5& 6 $ ' + 7 ( > > F) %G<3 ?&@ 3- HI ( ( J K L '+ C ' () ' * ' * (+ &==<3 ?:@ 3> 3+ >3 H 7 1 / 0 / L , / () 2 * (+ 8 ' 3 ?<@ E3 >3 4 5 $ 7 9 + 7 9 + ;" 4 2 * %GG3 ?$@ !3M !3> H+ 2 1 L & &% &== &<%7&N&3