Une nouvelle approche de synthèse d'observateurs hybrides à hystérésis

24/09/2017
Publication e-STA e-STA 2006-3
OAI : oai:www.see.asso.fr:545:2006-3:19934
DOI :

Résumé

Une nouvelle approche de synthèse d'observateurs hybrides à hystérésis

Métriques

23
8
562.57 Ko
 application/pdf
bitcache://da1809342fced74850c603638c9a17943f547875

Licence

Creative Commons Aucune (Tous droits réservés)
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/545:2006-3/19934</identifier><creators><creator><creatorName>Jean-Pierre Barbot</creatorName></creator><creator><creatorName>Salim Chaïb</creatorName></creator><creator><creatorName>Abderraouf Benali</creatorName></creator><creator><creatorName>Driss Boutat</creatorName></creator></creators><titles>
            <title>Une nouvelle approche de synthèse d'observateurs hybrides à hystérésis</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2017</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sun 24 Sep 2017</date>
	    <date dateType="Updated">Sun 24 Sep 2017</date>
            <date dateType="Submitted">Mon 15 Oct 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">da1809342fced74850c603638c9a17943f547875</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>33859</version>
        <descriptions>
            <description descriptionType="Abstract"></description>
        </descriptions>
    </resource>
.

 ¢¡¤£ ¥§¦©¨££ !!"#¦$&%¤£('¤£0)21!¡435%¤6879£('A@CBEDF79£"GIHP3Q£¨!"R7 ST1!D!"VU'¤£87XW ST1F7R3QY"#Y87`Ua7 bcedgfghpiGqrctsvu † wrx u€y‚„ƒ…ƒ†ce‡‰ˆ’‘G„“rcedgf†w€” ƒ…fg•…•#‘G‡‰ˆ–—ct–† w€˜ Cce“d™’fg„ƒ…ƒ…Q‘eceƒ…uf‡e–‡ † geh9iVjekml bnwporq ‘G‡‰ˆ‚dgtsectƒ†yuy‚ g ceq‚fv–†‡‰dgdv wworx‰qzyeq ‘G‡‰ˆ‚ƒ…{‰„• w€| ƒ†ce“‚}„e~ ‰€‚Cƒ…„…†r‡r€‚‚Cˆe‰…€tˆŠ‚‹‰ŒaŒ€ŽG„‘ˆr‹t’r€‚“‰”ŠŒ€‚z•„–ˆ€Ž—‚€e—‚˜‹t’f‚a™Cˆ€tŽŒaš‹‚•„vaŒ‡ k i…b jekml b k x5wf›œx s‰„“aˆ‚Qy‚ˆPf‡‰“‚}„Cceˆ w€žzŸeqoC  iG„ƒ…{e¡z¢”™£‡‰“z–†‡‰fg•… w€| ƒ†ce“‚}„e~ ˆr€‰Œ‰ˆ€t—˜‹t’f‰‹€m„vaŒ ¤z¥–¦¨§…©ª¥–«¬“­t®C¯p°²±”³p­µ´–³²¶°¸·±µ¹®„º„»C¯ª¼r´‘ºt¼ºt¯½ºC®C¯ª»r®„±¾®„º„»„¿—±†··±À­µ¼„Á¼r´‘ºC°²Â„±…¼º„»C´m·­R¯½Ãr®—³²Â„Ä…¯½±…ÅeƺtÇr¯½±…´‘¿†­†³‘±†»C´v¯£¼tº„»C´m»r®„±…°¸·­µ¯–¯½±…ÅC±¯½ÃC¯È³‘Ćɾ±…¯¾ÂµÃCÇr´²¶ÅC±…¯²Ê‚Ëe­9°²º„®µ¿µ±…´‘̵±†®C°²±#­µ¶Í®C¯‘¶rÎC»„±Ï·­9´‘ºtǏ»C¯È³‘±…¯–¯½±ÅC±m·ÐƺtÇr¯½±…´‘¿…­†³‘±†»C´w¼r´‘ºt¼tºt¯½ÑÀ¯½º„®—³ª­—¯‘¯‘»C´‘Ñ”±…¯wÌt´‘Òµ°²±£­t»„Ó…ÅC±†»„Ó…¯È³v´‘­†Á³‘Ѹ̄¶±…¯ª¯‘»r¶¿…­t®—³‘±…¯£ÔÕ×Ö ®„±V®„º„»„¿µ±†··±…­µ¼r¼r´‘ºC°²Â„±RÅC±#°²­t·°¸»r·‚ÅC±…¯’̵­t¶®C¯•ÅC±V·ÐƺtÇr¯½±…´–Á¿†­†³‘±†»C´¸¹¼t±¸´²É¾±”³–³‘­t®—³“»r®„±m¯È³‘­µÇ¶·¶³‘ÑÀ­µ¯½ÃrÉG¼„³‘º—³v¶ÎC»„±•ÅC±¾·ÐƺtDŽÁ¯½±…´‘¿†­†³‘±†»C´¸ÊÕ×Ö ®u°²º„ÉG¼ºt´–³‘±†Ém±†®—³ÏµÃC¯È³‘Ñ…´‘Ñ…¯‘¶¯#­Øє³‘Ñœ¶®—³‘ѸÌt´‘ÑQÙ8·ÐƺtÇr¯½±…´–Á¿†­†³‘±†»C´¸Ê‰Úf±”³ÀµÃC¯È³‘Ñ…´‘Ñ…¯‘¶¯ªÑ†·¶ÍÉe¶®„±m°²º„ÉG¼·Ä”³‘±†Ém±†®—³£·±m¼Â„ц®„º—ÁɾĆ®„±’ÅC±’°²Â„­†³–³‘±…´²¶®„ÌrÊËƺtÇr¯½±…´‘¿†­†³‘±†»C´¾¼r´‘ºt¼ºt¯½ÑVÎC»„±Ï®„º„»C¯m­µ¼r¼±†··±…´‘º„®C¯R۸ܽ¦ÈݖÞÈßvà²áÐݖ§…Þ“â¸ã²äܽÞÈåæ”Ýçrâ¸ã²¦¨áÐ¥–Þv¥–¦Èå¦a±…¯È³‚­µ¼r¼·¶ÎC»„Ñf±†®C¯‘»r¶³‘±wÙ£»r®„±ª°¸·­—¯‘¯½±wÅC±ª¯½ÃC¯È³‘Ćɾ±…¯´‘ºtǏº—³²¶ÎC»„±GÅC±e°²º„ºt¼Ñ…´‘­†³²¶º„®tÊe¬“±…¯•´‘Ñ…¯‘»r·³‘­†³v¯“ÅC±e¯‘¶Ém»r·­…³²¶º„®V¯½º„®—³¼r´‘Ñ…¯½±†®—³‘Ñ…¯m­†èe®5ÅC±Ïɾº„®—³v´‘±…´¾·ÐƱ”é…°²­µ°¸¶³‘ÑRÅC±Ï·ÐƺtÇr¯½±…´‘¿†­†³‘±†»C´¾¼r´‘º—Á¼ºt¯½ÑµÊ ê†ë¾êvìzízîeïðñòtízóôïì Lõö“÷€÷føpùmúwû“üý„þCÿ¡  ¢¤£¦¥¨§©¥    ¥£¦¥   § ¥!"   § ¦# ¢  ¢¤§  ¥ £¡$%!&§  $    §©'  ¦# ¢ '!(£¦¥)   ' ÿ  0 ¥1§32' 0   ¥4¦¥1§  ¢  §65  $¨§ þ !¦7 # ý  §©¥)£ õ ' ÿ §©¥    $ # ¥    §89¨$%!&§32¥ # $   # ¢¤2  ¥@!¡'  §A¥4¦  '¢ # '!&§B2¥ #©# ¥ $%¡   '¦2 ý ¥CD'     $E§ þ ! # ý  §©¥F£¦¥  õ ' ÿ §©¥    $ # ¥    D'     !G§ þ §H7 #I0 ¥   ' ÿ ' # ¢¤P  ¥Q£¦¥Q2'R'    $ # ¢ '!FS TVUW@XS¤YV`VUW@DS Y1abUW@XS YVTVUW@XS Yc%UW@ S Ybd1UW@ S Y1ebUW8¨fg' #   ¥h$%¡   '¡2 ý ¥h§©¥   $ ÿ $§  ¥h§     ! 0 '¦£  ¥ ý„þrÿ¦  ¢i£R¥ S pbUW@)S abUW@)S Y1qbUW@ S Y1pbU  P  ¢  $  ¥! # £  § þ § #I0 ¥r£¦¥ 0 $%!¦¢¤ ¡ $ # ¢ '!A8 ú ¥ 0 '¡£  ¥ ýCþCÿ¡  ¢¤£¦¥s¥1§ # ' ÿ # ¥!  &$    !¡¥ 0(¡ # ¢ 7  ¢¤!  $   ¢¤§I$ # ¢ '! $  4  '¢¤§©¢ !&$%t¥1§"£¦¥ N X'¢ ! # §C2 ý '¢¤§©¢¤§u£¡$%!&§  õ ¥1§©&$2¥v$   # ¢¤2  7  $%¢   ¥8w9¨$%!&§Q2¥ #©# ¥ #I £¦¥x£¦¥  4y   ' ÿ  0 ¥1§ 0 $b€¥    §Q§©'! #¨# '  7 €'    §)    §©¥! # §8 ü !C¥‚X¥ # @  õ  !u¥1§ # £¦ƒC$ r„ $%¢ # ¥…P  õ  !C§ þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥    § ¡ # $%! # £¦¥1§†2' 0s0‡¦# $ # ¢ '!&§(¥! #   ¥r   §©¢ ¥    §‡§©'  §H7 § þ § #I0 ¥1§3$§ þ 0  # ' # ¢¤P  ¥ 0 ¥! # § # $ ÿ  ¥ D¥ ¦#‰ˆ#   ¥)2' 0   # ¥ 0 ¥! # ¢ !&§ # $ ÿ  ¥86 õ $ ¦#   ¥"¥1§ # £¦ƒh$   ý  !¡' 0s !¡¥r£¦¥E‘“’¡”b•–•—˜d™ieRf&gs'  h —eXib8X9¨$%!&§2¥ # $   # ¢¤2  ¥@&!¡'  §g   'D'j§©'!&§  ¥1§£¦¥  4y§ #   $ #I t¢ ¥1§ §  ¢  $%! # ¥1§kD'    §    0 '! # ¥   2d¥1§g£¦¥  4r   ' ÿ  0 ¥1§Ql i) m !¡¥(!¡' ¡ ¥   ¥‡$%¡   '¦2 ý ¥(£¦¥†2$  2 ¡ £¦¥1§gtj$%¢ !&§g£¦¥  õ ' ÿ §©¥    $b7 # ¥    @bD¥   0 ¥ #©# $%! #‰ !¡¥n§ # $ ÿ ¢  ¢ #Ik !¡¢ „ '   0 ¥k¥ # $§ þ 0  # ' # ¢¤P  ¥k£¦¥  õ ' ÿ §©¥    $ # ¥    8b9¥1§‰2'!&£¦¢ # ¢ '!&§6§ ¦o §I$%! # ¥1§3D'     õ ¥d4¡¢¤§ # ¥!&2d¥n£¦¥ 2¥1§ktj$%¢ !&§k'! #n#I £¦'!¡!  ¥1§n£¡$%!&§  ¥ # ý  '   0 ¥sY8 ii) m !p2d' 0 X'   # ¥ 0 ¥! # ýCþ § #I    §©¢¤§…$ #I ¢ ! #I t    5  õ ' ÿ §©¥    $b7 # ¥    8 ú ¥ # ýCþ § #I    §©¢¤§  ¢ 0 ¢ !¡¥g2' 0   # ¥ 0 ¥! #q ¥) ý  !¡' 0s !¡¥n£¦¥ 2 ý $ #©# ¥   ¢ !¡ts¥ # 5 „ '   # ¢ '   ¢  ¥†rD¥!¡'&8 ú ¥ # $   # ¢¤2  ¥y¥1§ # '   tj$%!¡¢¤§  £¦¥  $ 0 $%!¡¢    ¥v§  ¢  $%! # ¥8k9¨$%!&§  $ §©¥12 # ¢ '!hs©sd@‰!¡'  §‡¢ ! #   '¦£  ¢¤§©'!&§  õ ' ÿ §©¥    $ # ¥   ¾ýCþCÿ¡  ¢¤£¦¥8‰9¥  4 ¥4¦¥ 0   ¥1§A¢    § #   $ # ¢ „ §B£¦¥1§B£¦¥  4Q   ' ÿ  0 ¥1§  '¦P ¡ §w    2  £¦¥ 0 7 0 ¥! # §©¥   '! #     §©¥! #I §8kfg'  §  !¡'!&2¥   '!&§  tj$  ¥ 0 ¥! # £¡$%!&§ 2¥ #©# ¥k§©¥12 # ¢ '!  ! # ý  '   0 ¥   ¥  $ # ¢ „ $  2$  2 ¡ £¦¥1§3tj$%¢ !&§3£¦¥  õ ' ÿ 7 §©¥    $ # ¥    @$%¢ !&§©¢jP  ¥  $n!¡' ¡ ¥   ¥ „ '   0‡¡ $ # ¢ '!(£¦¥  õ ' ÿ §©¥    $ # ¥   tXu6v–w–xHydx“z {¡x |v–|‰}b~bx“~VH|q€bx“wB{ x)A|H‚dz ƒd~…tXuH~v–w„ud… 1 † â…à²áÍáÐݖÞÈå‡1ˆg‰1Š3‹ Hz { { xIv–z ƒd~ ‹ w–x“€Vz ŒVu ‹ v–w„ ‹ €Vw„ƒWŽVu ‹ ŒVuB{ x ‹– w‘¤x“HuBŒVuBHƒd’k“ ’  vWxIv–z ƒd~j”d’nƒdz ~ ‹  ƒdw‘vD•  uA{ u‰– Ý©‡µÛ)‰d ~VuBz ~1}b~Vz v–|AŒVuAHƒd’n’  vWxIv–z ƒd~ ‹ Œbx“~ ‹  ~¨z ~v–uHw‘ydx“{ { uqŒVu6v–uH’n€ ‹ }b~Vz¤… ýCþCÿ¡  ¢¤£¦¥@P  ¢D§©¥   $…£¦' #I £ õ  !r2' 0 D'   # ¥ 0 ¥! # ý„þ § #I    §©¢¤§89¨$%!&§  $r§©¥12 # ¢ '!vs©s©sd@X!¡'  §¨£¦'!¡!¡¥   '!&§  ¥ 0 '¦£  ¥†£ õ  !E§ þ § #I0 ¥‡t  7 !    $  £¦¥ 0 $%!¡¢  ¡ $ # ¢ '!A@q$%¢ !&§©¢gP  ¥y§I$ „ '   0‡¡ $ # ¢ '! ý„þCÿ¡  ¢¤£¦¥8 9¨$%!&§  $§©¥12 # ¢ '!…s—‡@!¡'  §3$%¡  ¢¤P  ¥   '!&§  õ ' ÿ §©¥    $ # ¥   aý„þCÿ¡  ¢¤£¦¥ 5r£¦¥  4 0 $%!¡¢  ¡ $ # ¥    §¨5r£R¥  4v£¦¥t    §£¦¥  ¢ ÿ ¥   #I §g¥!˜2'R'  7   $ # ¢ '!A@X  ¢¤§Q!¡'  §…£¦'!¡!¡¥   '!&§  ¥1§    § ¡ # $ # §Q£¦¥x§©¢ 0‡¡ $ # ¢ '!˜¥ # !¡'  § # ¥   0 ¢ !¡¥   '!&§  õ $   # ¢¤2  ¥Q¡$    !¡¥(2'!&2   §©¢ '!A8 ê¸ê†ës™&šìzíX›Aœ&ž5ð Ÿ ïB Xžî1¡j¢„íwžñaîp›Xš3 eîzóÐðBžv£¤›Xš6”íw¥îw¥&¸ó‘ ¦(§"¨g©dª —˜d«b”b•—¬¦˜’R­ © ˜d™„®— 9¨$%!&§62¥ #©# ¥k§©¥12 # ¢ '!A@V!¡'  §3$ ÿ '   £¦'!&§  !¡¥k2  $§I§©¥)£¦¥k§ þ § #I0 ¥1§ ýCþCÿ¡  ¢¤£¦¥1§  ¢ !  $%¢   ¥1§k£  2   ¢ # ¥Q&$   ˙z(t) = Aqz(t) + Bqu(t) ¯ YV° y(t) = Cqz(t) ¯ `° q(t) = qi si ϕ(z) ∈ χi i = 1, ..., N ¯ pj° '± z(t) ∈ Rn×1 ¥1§ #) õ # $ # 2'! # ¢ !  @ q ∈ {q1, ..., qN } ¥1§ #k õ # $ # £¦¢¤§I2   ¥ # @ u(t) ∈ Rlu×1 ¥1§ #  õ ¥! #    ¥@ y(t) ∈ Rly×1 ¥§ #  $…§©'   # ¢ ¥8 Aq ∈ Rn×n , Bq ∈ Rn×lu , Cq ∈ Rly×n 8 χi §©'! # £¦¥1§x§©'  §H7 ¥!&§©¥ 0 ÿ  ¥1§n£¦¥ χ @ # ¥  P  ¥ χ = i=1,...,N χi @&$  ¥12 χi ∩ χj = ∆χij ∀i = j ¯ cR° ¥ # ∆χij = ∅ §©¢ |i − j| > 1 ∆χij = ∆χji = ∅ §©¢A!¡'! ¯ T° ²χ ³+ ´χ µ ¶· +∆ ¸¸χ ¹− ºχ »»A¼½¾ −∆χ ¿ z ‚V…jÀd…QÁB~uÂ1uH’n€V{ u‰z { { V‹ v–w–xIv–z ¡ŒVu ‹B‹ ƒ V‹ “iuH~ ‹ uH’)ÃV{ u ‹ χi ϕ : Rn → χ ¥1§ # $ „ '!&2 # ¢ '!v£¦¥‡2' 0s0‡¦# $ # ¢ '!A8D õ  P  $ # ¢ '! ¯ pj°‰2' 0 ÿ ¢ !  ¥$  ¥12 ¯ cR°6¢ 0   ¢¤P  ¥¨P  ¥  ¥§ þ § #I0 ¥1§ ýCþCÿ¡  ¢¤£¦¥ ¯ YV° D¥ ¦#"ˆ#   ¥   ¥    §©¥! #I &$   £¦¥  4 0 '¦£  ¥1§ i '  i + 1 P  $%!&£ ϕ(z) ∈ ∆χi,i+1 8 ù !Ä!¡' # ¥Å&$   qi  õ # $ # £¦¢¤§I2   ¥ # 5  $ k`eme 2' 0s0(¦# $ # ¢ '!A8 A¥p2' 0 X'   # ¥ 0 ¥! # £  § þ § #I0 ¥ ý„þCÿ¡  ¢¤£¦¥Æ¥1§ # §©' ¡0 ¢¤§y5G£¦¥1§ 2'! #   $%¢ ! # ¥1§  't¢¤P  ¥1§x£¦¥ # þ X¥Æl)§©¢ q = qi $  '   §@‰5  $ (k + 1)`eme 2' 0s0(¦# $ # ¢ '!A@  ¥x§ þ § #I0 ¥ ý„þCÿ¡  ¢¤£¦¥"2' 0s0(¦# ¥  !¡¢¤P  ¥7 0 ¥! #s ¥   §  ¥1§†§ þ § #I0 ¥1§ qi−1 '  ÿ ¢¤¥! qi+1 8 ú ¥  $  ¥ ¦# £¦¢   ¥ P  ¥  ¥C§ þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥    § ¡ # $%! # ! õ ¥1§ # &$§†2' 0   # ¥ 0 ¥! # 2'!¡!¡¥12 #I 8  õ ' ÿ §©¥    $ # ¥   pýCþCÿ¡  ¢¤£¦¥…¥1§ # £ Ç !¡¢B&$    ¥ 0sˆ0 ¥ # þ D¥‡£ õ  P  $b7 # ¢ '!&§QP  ¥ ¯ YV°d@X'±˜2 ý $P  ¥s§©'  §H7W' ÿ §©¥    $ # ¥    2'! # ¢ !  $    $  $ „ '   0 ¥…§  ¢  $%! # ¥ ˙ˆz(t) = (Aq − LqCq)ˆz(t) + Bqu(t) + Lqy(t) ¯ aj° '± Lq (q = 1, ..., N) §©'! #3 ¥1§Btj$%¢ !&§B£¦¥1§ N ' ÿ §©¥    $ # ¥    §A2'! # ¢ 7 !  §8DB$"£ þ !&$ 0 ¢¤P  ¥(£¦¥  õ ¥  I  ¥    £ õ ' ÿ §©¥    $ # ¢ '%! e = z − ˆz ¥1§ # £¦'!¡!  ¥Q&$   ˙e(t) =    (A1 − L1C1)e(t) §©¢ ϕ(z) ∈ χ1888 (AN − LN CN )e(t) §©¢ ϕ(z) ∈ χN ¯ d%°  ¥1§‰&$   $ 0s#   ¥1§ Lq §©'! # 2$  2 ¡  §q£¦¥ # ¥  §©'   # ¥gP  ¥g2 ý $P  ¥ 0 $b7 #   ¢¤2¥ Aq − LqCq §©'¢ # $§ þ 0  # ' # ¢¤P  ¥ 0 ¥! # § # $ ÿ  ¥D'    # '  § q 8 ú ¥D¥!&£¡$%! # @¡2' 0s0 ¥  ¥ 0 '! #   ¥  õ ¥4¦¥ 0   ¥…§  ¢  $%! # @¡2¥ #©# ¥…£¦¥   7 !¡¢    ¥2'!&£¦¢ # ¢ '!x! õ ¥1§ # &$§ § ¦o §I$%! # ¥gD'    $§I§    ¥    $(§ # $ ÿ ¢  ¢ #I $§ þ 0  # ' # ¢¤P  ¥Qt  ' ÿ $  ¥Q£¦¥ ¯ d%°d8 9¨$%!&§sS YUW@X¢  ¥1§ #Q0 '! #    P  õ  !E§ þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥†¢ !&§ # $ ÿ  ¥s!¡¥    § ¡ # ¥F&$§ „ '   2¥ 0 ¥! # £ õ  !¡¥v2' 0s0‡¦# $ # ¢ '!È¥! #   ¥v£¦¥1§"§©'  § § þ § #I0 ¥1§F§ # $ ÿ  ¥1§@g2 õ ¥1§ # 75b7£¦¢   ¥@nP  ¥  $È2' 0s0‡R# $ # ¢ '!É¥! #   ¥    §©¢ ¥    §x§ þ § #I0 ¥1§s§ # $ ÿ  ¥1§†X¥ ¦# ¥!¡t¥!&£   ¥    !¡¥C¢ !&§ # $ ÿ ¢  ¢ #I $  !¡¢  ¥1$  £  § þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥8 m !†$ ¦#   ¥1§ # þ X¥k£¦¥)   ' ÿ  0 ¥@ P  ¢AD¥ ¦# !¡¥Q&$§kX¥   0 ¥ #©#   ¥  õ $§ þ 0  # '%7§ # $ ÿ ¢  ¢ # þ £¦¥ ¯ d%°)¥1§ #n ¥  ý  !¡' 0s !¡¥‡£¦¥r‘“’¡”b•–•—˜d™ieRf%@  õ ¥4¦¥ 0   ¥‡§  ¢  $%! #g0 '! #   ¥  ! # ¥   ý  !¡' 0s !¡¥8 ÊËAÌ¡ÍÆÎ6τИÑDÒAÓ '¢ #g ¥…§ þ § #I0 ¥ ˙e(t) = Aq(t)e(t) @&$  ¥12 A1 = 0 −1 1 −2 , A2 = 0 1 −1 −2 ¯ ej° ¥ #g $  '¢A£¦¥(2' 0s0‡¦# $ # ¢ '! q(0) = 1 q(t) = 1 §©¢ σ− = 2 ∧ t > δk 2 §©¢ σ− = 1 ∧ t > δk ¯„Ô ° '± q− ¥1§ #" $  $  ¥        2  £¦¥! # ¥y£¦¥ q @q¥ # δk ¥1§ #" ! # ¥ 0 &§ £  D¥!&£¡$%! # £  !¡' 0 ÿ¦  ¥)£¦¥)2' 0s0‡¦# $ # ¢ '!&§ k 8Vf'  §32 ý '¢¤§©¢¤§I§©'!&§  õ  '  ¦# ¢ '!C§  ¢  $%! # X'    δk δ0 = 1 δk = δk−1 + 2(k + 1) k(k + 2) ¯ Y1qj° B$ Ç t    ¥Õ` 0 '! #   ¥  ¥1§ #   $%€¥12 # '¢   ¥1§Ö£¦¥1§×£¦¥  4ا©'  §H7 § þ § #I0 ¥1§@  ¥(§ þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥    § ¡ # $%! # ! õ ¥1§ # &$§  !¡¢ „ '   0s 7 0 ¥! # $§ þ 0  # ' # ¢¤P  ¥ 0 ¥! # § # $ ÿ  ¥‡¥ #     §©¥! # ¥  !y ý  !¡' 0s !¡¥ £¦¥"2 ý $ #©# ¥   ¢ !¡tu¥ #(0sˆ0 ¥"£¦¥urD¥!¡' ¯ Ç t    ¥xpj°d@ 0 $  t    P  ¥  ¥1§ £¦¥  4Ƨ©'  §H7§ þ § #I0 ¥1§…§©'! # $§ þ 0  # ' # ¢¤P  ¥ 0 ¥! # § # $ ÿ  ¥1§83fg'  §    'D'j§©'!&§B$  '   §  ¥ # ý  '   0 ¥)§  ¢  $%! # P  ¥)!¡'  §3$  '!&§3£ 0 '!¦7 #    £¡$%!&§sS c%UW@BP  ¢ £¦'!¡!¡¥   $  !¡¥"2'!&£¦¢ # ¢ '!Ƨ ¦o §I$%! # ¥sD'     $ § # $ ÿ ¢  ¢ #I $§ þ 0  # ' # ¢¤P  ¥…£  § þ § #I0 ¥ ý„þCÿ¡  ¢¤£¦¥(£¦'!¡!  &$   ¯ d%°d8 Ù)ÚAÛVÜ&ÝVÞßÆà¤áDâ ãkä ™i剗Iæ™ ª •—‡¬¦eX—(çx”b•–˜d™„‘“—x®è–é‰e&™„—ê¦i ª ™i•–™i«b— P ∈ Rn×n —•k®— ª çx”b•–˜d™„‘I— ª Xq ∈ Rn×ly ë q = 1, ..., N ë •—å3ì¬&—(å — ª N ™ieX—–fj”bå ™i•è“— ª çx”b•–˜d™„‘™iå —å‘å — ª AT q P + PAq − XqCq − CT q XT q < 0, q = 1, ..., N ¯ YYV° −1.5 −1 −0.5 0 0.5 1 1.5 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 x1 x2 ¿ z ‚V…Aí1…Èî¦xsHƒ  w„Ã%u‡uH~CHƒd~v–z ~  u‡w„uH€Vw„| ‹ uH~v–u†{ x‡v–w–x“ï‘uHv–ƒdz w„u†Œjð |vWxIvQŒ  ‹„ñ1‹ v–H’nu)À‰{ x)ƒ  w„Ãbu uH~¨€%ƒdz ~v–z { { |Hu‰w„uH€Vw„| ‹ uH~v–u HuH{ { u‰Œ ¨‹„ñ1‹ v–H’nu‰í1… −1.5 −1 −0.5 0 −0.5 0 0.5 1 x1 x2 ¿ z ‚V…bò1…¨ó¦w–x“ï‘uHv–ƒdz w„uqŒ ¨‹„ñ1‹ v–H’nu‰Ž ñ ÃVw„z ŒVu ª ibe&• ª ”b•–™ ª„ô ”b™i•— ª ë ”bå ib˜ ª å©ä i ©dª —˜d«b”b•—¬¦˜p’R­ © ˜d™„®—öõ©÷Iøö”b«b—“‘Èå — ª fj”b™ie ª ®ibe&eXè ª ꡔb˜ Lq = P−1 Xq, q = 1, ..., N ¯ YV`° ” ª“ª ¬¦˜I—gå©ä ” ª ­bçêD•ib•–™„ì¬&— ª •” © ™iå ™i•èQ®—¨å©ä —˜d˜©—¬¦˜Q®Aä i ©dª —˜d«b”b•–™„ibeÆõ“ùHø ì¬&—å ì¬&— ª ib™i•)å ”xçx”be&™„ú˜I—†®—s‘Iibç†ç†¬¦•”b•–™„ibe § û ÝVàüBý¡à¦âB$p§ # $ ÿ ¢  ¢ #I £  § þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥   ¥    §©¥! #I &$    õ ¥  I  ¥    £ õ ' ÿ §©¥    $ # ¢ '! ¯ d%°d@A¥1§ # $§I§     ¥s§ õ ¢  ¥4¦¢¤§ # ¥  !¡¥ „ '!&2d7 # ¢ '!v£¦¥† þ $%  !¡'  2' 0s0( !¡¥‡X'     õ ¥!&§©¥ 0 ÿ  ¥†£¦¥1§¨§©'  §§ þ §H7 #I0 ¥1§  ¢ !  $%¢   ¥1§@RP  ¢w2' 0 D'j§©¥  ¥Q§ þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥   ¥    §©¥! #I &$    õ ¥  I  ¥    £ õ ' ÿ §©¥    $ # ¢ '! ¯ d%°d8 Ó  ¡D'j§©'!&§‡P  õ ¢  ¥4¦¢¤§ # ¥  !¡¥ „ '!&2 # ¢ '!C£¦¥( þ $%  !¡'  2' 0s0‡ !¡¥ V (e) := eT Pe @¡$  '   § (Aq − LqCq)T P + P(Aq − LqCq) < 0, q = 1, ..., N ¯ Y1pj° §©'! # §I$ # ¢¤§ „ $%¢ # ¥1§@  ¥1§  P  $ # ¢ '!&§ ¯ Y1pj°‡D'    q ∈ Q §©'! # !¡'!  ¢ !  $%¢   ¥1§)&$  k  $%¡D'   # $  4  $   ¢¤$ ÿ  ¥1§ P, Lq @ q = 1, ..., N 8 Ó '¢ #  ¥n2 ý $%!¡t¥ 0 ¥! # £¦¥  $   ¢¤$ ÿ  ¥1§ Xq = PLq @  õ  P  $ # ¢ '! ¯ Y1pj°AX'   q = 1, ..., N £¦¥  ¢ ¥! # AT q P + PAq − XqCq − CT q XT q < 0, q = 1, ..., N ¯ YcR° 2¥1§y£¦¥   !¡¢    ¥1§  P  $ # ¢ '!&§ „ '   0 ¥! # £¦'!&2  !þ§ þ § #I0 ¥p£¦¥ N BÿFsH§n£¦¥  $   ¢¤$ ÿ  ¥1§ P, X1, ..., XN 8 9¨$%!&§  $h§©'  §H7§©¥12 # ¢ '! §  ¢  $%! # ¥@k!¡'  §r   'D'j§©'!&§  !¡¥E§©'   7 # ¢ '!vD'     ¢ 0 ¢ !¡¥    ¥† ý  !¡' 0s !¡¥s£¦¥†2 ý $ #©# ¥   ¢ !¡t&@D¥ # $%¢ !&§©¢  ¥ # ý  '   0 ¥vYu§ õ $%¡  ¢¤P  ¥u§I$%!&§  õýCþ D' # ý  §©¥u£¦¥C2 ý $ #©# ¥   ¢ !¡t˜£¦¥1§ 2' 0s0‡¦# $ # ¢ '!&§8 ¡ §£¢ ibçê¡ib˜d•—çx—e&•þ®Aä’R­ ª •Wè˜©è ª ™ ª ®— å©ä i ©dª —˜d«b”b•—¬¦˜×’R­ © ˜d™„®— çxi1®b™ é è ö Ç !u£¦¥Q£¦'!¡!¡¥   5  õ ' ÿ §©¥    $ # ¥     !¡¥ 0 ¥¢   ¥    ¥¨§ # $ ÿ ¢  ¢ #I ¥!  ¢ # $%! #† ¥r ý  !¡' 0s !¡¥C£¦¥C2 ý $ #©# ¥   ¢ !¡tv¥ # 5 „ '   # ¢ '   ¢  ¥yrD¥!¡'&@ !¡'  §k$   '!&§ 0 '¦£¦¢ Ç ¥    õ ' ÿ §©¥    $ # ¥       'D'j§  8jA¥Q2 ý $%!¡t¥ 0 ¥! # $    $  ¢ ¥  $  !¡¢  ¥1$  £¦¥1§‡§  P  ¥!&2¥1§‡£¦¥C2' 0s0(¦# $ # ¢ '!&§†£ õ  ! §©'  §H7W' ÿ §©¥    $ # ¥    5  !F$ ¦#   ¥8 ü !y¥‚X¥ # @&!¡' # '!&§g&$   Ei  ¥‡§©¢ t!&$  £ õ $2 # ¢  $ # ¢ '!F£¦¥  õ ' ÿ §©¥    $b7 # ¥    2'! # ¢ !  i 8A õ ' ÿ §©¥    $ # ¥    i §©¥   $u$2 # ¢  §©¢6¥ # §©¥ ¡ ¥ 0 ¥! # q=i-1 q=i q=i+ 1 1−iE iE 1+iE iE 1+iE 2+iE q=i-1 q=i q=i+ 1 χ¤− ¥χ ¦χ §+ ¨χ © ++∆ χ q © ++∆ χ q= i + 2 +∆χ  −∆ χ  +∆ χ −∆χ  x   Ã! ¿ z ‚V…!"V…  x  ‰$# Â1uH’n€V{ uqŒVuqv–w„ƒdz ‹ ’nƒŒVu ‹ ŒVu {¤ð ƒdà ‹ uHw‘ydxIv–u  w‰Ž ñ ÃVw„z ŒVud…  Ã! ‰ { xn©x“w–x“v–|Hw–z ‹ v–z •  ukŽ ñ1‹ v–|Hw„| ‹ z ‹ ŒVu {¤ð ƒdà ‹ uHw‘ydxIv–u  wH”Ruv6{ xkv–w–x“ï‘uHv–ƒdz w„ukŒVu {¤ð |vWxIv ŒVz ‹ Hw„uv©… §©¢ Ei = 1 @&2¥(§©¢ t!&$  ¥1§ #    t¢ # £¦¥  $ 0 $%!¡¢    ¥…§  ¢  $%! # ¥ ¯ Ç t    ¥ T°    Ei = 1 §©¢ [E∗ i = 1] ∧ [ϕ ∈ χi] Ei = 0 §©¢ !¡'! E∗ i = 1 §©¢ (ϕ ∈ χi − ∆χi,i+1) ∧ (E∗− i−1 = 1) ∨ (ϕ ∈ χi − ∆χi−1,i) ∧ (E∗− i+1 = 1) E∗ i = 0 §©¢ !¡'! ¯ YVT° '± E∗ i ¥1§ #… !E§©¢ t!&$  $  4¦¢  ¢¤$%¢   ¥†£¦'! #… õ  '  ¦# ¢ '!˜¥1§ # £R'!¡!  ¥ &$   ¯ YVT°d8 E∗ i ¥1§ #x¦# ¢  ¢¤§  2' 0s0 ¥  !¡¥ 0s0 '¢   ¥C£  § þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥  '   §g£  &$§I§I$%t¥…£¡$%!&§  ¥ 0 '¦£¦¥ i 8DA¥‡§©¢ t!&$  E∗− i ¥1§ #  $  $  ¥        2  £¦¥! # ¥C£  §©¢ t!&$  E∗ i 8 Ó ¢  ¥F§ þ § #I0 ¥ ý„þrÿ¦  ¢i£R¥ %χ &'( + )χ 0 12 +∆ 33χ q=i+1 446578+∆χ q=i 9χ @+ 9χ 578+∆ 44χ ¿ z ‚V…BAV…îDð Ž ñ‹ v–|Hw„| ‹ z ‹ uvB{ u ‹A‹ ƒ V‹ “iuH~ ‹ uH’)ÃV{ u ‹ ŒVu‰Hƒd’n’  vWxIv–z ƒd~  '   ¥x£¡$%!&§  õ ¢ ! # ¥   §©¥12 # ¢ '!E£¦¥"£¦¥  4 0 '¡£¦¥1§ qi ¥ # qi+1 $  '   §@ !¡'  §s2'! # ¢ !  '!&§s5 ¦# ¢  ¢¤§©¥    õ ' ÿ §©¥    $ # ¥    £ ¤0 '¦£¦¥ qi D¥!¦7 £¡$%! #¨ !v2¥   # $%¢ !F¢ ! # ¥    $   ¥‡£¦¥ # ¥ 0 &§ ∆t @XP  ¢6£  D¥!&£   $"£¦¥rl  õ  '  ¦# ¢ '!†£¦¥  õ # $ # 2'! # ¢ !  @%£¦¥  $ „ '!&2 # ¢ '!†£¦¥n2' 0s0‡R# $ # ¢ '! ϕ ¥ # £¦¥1§n§©'  §H7W¥!&§©¥ 0 ÿ  ¥1§ ∆χi,i+1 8 B$ „ '   0 ¥pt  !    $  ¥Æ£¦¥  õ ' ÿ §©¥    $ # ¥   9ýCþCÿ¡  ¢¤£¦¥ 0 '¡£¦¢ Ç& P  ¥ !¡'  §g$%¡D¥  '!&§‡i ©dª —˜d«b”b•—¬¦˜Q’R­ © ˜d™„®—DCs’R­ ª •è˜Iè ª ™ ª ¥1§ # £R'!¡!  ¥ &$      ˙ˆz = N i=1 [(Ai − LiCi)ˆz + Biu + Liy]Ei ˆy = N i=1 Ci ˆzEi ¯ Y1aj° ÷ $   ¥4¦¥ 0   ¥@)2'!&§©¢¤£    '!&§ #   '¢¤§ 0 '¦£¦¥1§"£¦¥  õ ' ÿ §©¥    $ # ¥    5 ýCþ § #I    §©¢¤§u2' 0s0 ¥   ¥    §©¥! #I §     $ Ç t    ¥vc ¯ $j°d@n¥ # §  R7 D'j§©'!&§sP  ¥  ¥ 0 '¦£¦¥F£  § þ § #I0 ¥ ý„þCÿ¡  ¢¤£¦¥F5  õ ¢ !&§ # $%! # t ¥1§ # q(t) = i @  õ ' ÿ §©¥    $ # ¥    2'! # ¢ !  i §©¥   $r$2 # ¢  @w$  '   § Ei = 1 @ 2¥ # ' ÿ §©¥    $ # ¥    !¡¥rP  ¢ #©# ¥   $u&$§  ¥ 0 '¡£¦¥ i D'    &$§I§©¥   $  0 '¦£¦¥ q = i − 1 '  ÿ ¢ ¥! q = i + 1 §©¢)¥ # §©¥ ¡ ¥ 0 ¥! # §©¢  ¥1§ §©¢ t!&$  4 Ei−1 '  ÿ ¢ ¥! Ei+1 §©'! # $2 # ¢ % §   ¥1§©D¥12 # ¢  ¥ 0 ¥! # ¯ Ç 7 t    ¥Qc ¯ ÿ °©°d8 ö     §B$  '¢   £  2   ¢ #B õ ' ÿ §©¥    $ # ¥   zýCþCÿ¡  ¢¤£¦¥@!¡'  §3$   '!&§A£¦¥12   ¢   ¥ £¡$%!&§  $r§©¥12 # ¢ '!˜§  ¢  $%! # ¥  ¥ 0 '¦£  ¥s£ þ !&$ 0 ¢¤P  ¥†£  § þ § #I0 ¥ £¦¥ 0 $%!¡¢  ¡ $ # ¢ '! #I £¦¢  $%¢ !&§©¢AP  ¥(§I$ 0(¡ # ¢ 7  ¢ !  $   ¢¤§I$ # ¢ '!A8 ê”ê”ê†ëFEQšìw¢HG£óPIñAžQð Ÿ ña줝dš6”íwœQGž5îeïB ‰ïaízóPIñAžQðBž Gg¢ìaóSRrñUT¢Cízóôïì B$p£ þ !&$ 0 ¢¤P  ¥˜£ õ  !ɧ þ § #I0 ¥   ' ÿ ' # ¢¤P  ¥y£¦¥E2'R'    $ # ¢ '! ¥! #   ¥y   §©¢ ¥    § 0 $%!¡¢  ¡ $ # ¥    § ¯ Ç t    ¥vaj°x¥§ # ' ÿ # ¥!  ¥v&$    $p2' 0 ÿ ¢ !&$%¢¤§©'!G£¦¥1§r£ þ !&$ 0 ¢¤P  ¥1§"£¦¥1§ 0 $%!¡¢  ¡ $ # ¥    §x¥ # £¦¥  õ ' ÿ €¥ #0 $%!¡¢  ¡  8XB$"£ þ !&$ 0 ¢¤P  ¥‡£  i`eme   ' ÿ ' # ¥1§ # £¦'!¡!  ¥ &$   Mi(Θi)¨Θi + Vi(Θi, ˙Θi) ˙Θi + Gi(Θi) + JT i (Θi)Fi = τi ¯ Ybd%° '±‡D'     ¥ 0 $%!¡¢  ¡ $ # ¥    i @ Mi ∈ Rp×p ¥1§ #6 $ 0 $ #   ¢¤2¥k£ õ ¢ !¡¥   7 # ¢ ¥@ Vi ∈ Rp×p ¥1§ #" ¥  ¥12 # ¥    ¥!&2$%&§ ¡ $%! # £¦¥1§ # ¥   0 ¥1§"£¦¥ ú '   ¢ '  ¢¤§)¥ # 2¥! #   ¢ „‘ t¥@ Gi ∈ Rp×1 ¥1§ #g ¥  ¥12 # ¥    £¦¥…t   $  ¢ #I @ Ji ∈ Rs×p ¥1§ #† $ 0 $ #   ¢¤2¥WV$2' ÿ ¢ ¥!¡!¡¥@ s ¥1§ #† ¥r!¡' 0 ÿ¡  ¥r£¦¥ £¦¥t    §)£¦¥  ¢ ÿ ¥   #I £¡$%!&§  õ ¥1§©&$2¥¨£¦¥1§ #YX 2 ý ¥§8 Fi ∈ Rs×1 ¥1§ #k ¥  ¥12 # ¥    £¦¥1§ ¥‚X'   # § $  4sD'¢ ! # §)£¦¥¨2'! # $2 # § £ r0 $%!¡¢  ¦ $ # ¥   i @¦¥ # τi ∈ Rp×1 ¥1§ #g ¥  ¥12 # ¥    £¦¥1§g2'    ¥§g$   # ¢¤2 ¡ $%¢   ¥1§8 B$p£ þ !&$ 0 ¢¤P  ¥yt  ' ÿ $  ¥y£  § þ § #I0 ¥v£¦¥ 0 $%!¡¢  ¡ $ # ¢ '! §I$%!&§  õ ' ÿ €¥ # ¥1§ # ' ÿ # ¥!  ¥g¥!x2' 0 ÿ ¢ !&$%! #q ¥1§q£ þ !&$ 0 ¢¤P  ¥1§q£¦¥1§ k 0 $b7 !¡¢  ¡ $ # ¥    §8 ú ¥ #©# ¥(£ þ !&$ 0 ¢¤P  ¥Q¥1§ # £¦'!¡!  ¥Q&$   S Yc%U Mr(Θ)¨Θ + Vr(Θ, ˙Θ) ˙Θ + Gr(Θ) + JT r (Θ)Fr = τr ¯ Y1ej° '± Mr =    M1 08 8 8 0 Mk    ; Vr =    V1 08 8 8 0 Vk    ¯ Y Ô ° Gr =    G1888 Gk    ; JT r =    JT 1 08 8 8 0 JT k    ; Fr =    F1888 Fk    ¯ `%qj° τr =    τ1888 τk    ; Θ =    Θ1888 Θk    ¯ `¦YV° ¥ # ΘT i = θi1 , . . . , θip 8 B$ 0 '¡£  ¢¤§I$ # ¢ '!F£¦¥  õ ' ÿ €¥ # §©' ¡0 ¢¤§g5"£¦¥1§g¢ ! # ¥   $2 # ¢ '!&§$  ¥12  ¥1§ 0 $%!¡¢  ¡ $ # ¥    §g¥1§ # £R'!¡!  ¥†£¡$%!&§  ¥1§¨2'R'   £¦'!¡!  ¥1§  '¦2$  ¥1§ &$   Mo(X) ¨X + Vo(X, ˙X) ˙X + Go(X) − G(X)Fr = 0 ¯ ``° '± X ∈ Rs×1 8qfg' # '!&§sP  ¥  ¥1§†X¥   #I  ‘ÿ $ # ¢ '!&§†¥4 # ¥   !¡¥1§†!¡¥ §©'! # &$§n2'!&§©¢¤£     ¥1§k£¡$%!&§ ¯ ``°d8 (a) x y ),( ```` τθ ),( abab τθ ),( cdcd τθ ),( baba τθ ),( eeee τθ ),( efef τθ (b ) x y z ),( ```` τθ ),( abab τθ ),( cdcd τθ ),( baba τθ ),( eeee τθ ),( efef τθ ),( gggg τθ ),( fefe τθ ),( gaga τθ ¿ z ‚V…6h1… # Â1uH’n€V{ u ‹ ŒVu ‹„ñ1‹ v–H’nu ‹ ŒVu3’gx“~Vz €  { xIv–z ƒd~ ‹ ”  x D©x ‹ €V{ x“~bx“z w„ud”  Ã! ©x ‹ òpi 9    $%! #‡ $ #YX 2 ý ¥r£¦¥r2'¦'    $ # ¢ '!A@  ¥u§ þ § #I0 ¥"£¦¥ 0 $%!¡¢  ¡ $b7 # ¢ '!x¥1§ # §©' ¡0 ¢¤§q5(£¦¥1§ 2'! #   $%¢ ! # ¥1§‰ ýCþ §©¢¤P  ¥1§@2¥1§ 2'! #   $%¢ ! # ¥1§ D¥ ¡ ¥! # §©¥    § ¡0 ¥   ¡$    $   ¥  $ # ¢ '!u§  ¢  $%! # ¥sS TVU Jr −GT ˙Θ ˙X = 0 ¯ `%pj° '± Jr ¥ # G §©'! #¨ ¥1§ 0 $ #   ¢¤2¥1§rq Vj$2' ÿ ¢ ¥!¡!¡¥sq¨¥ # q£¦¥‡   ¢¤§©¥‡£¦¥  õ ' ÿ €¥ # qb@   ¥1§©X¥2 # ¢  ¥ 0 ¥! # 8 9¨$%!&§…2¥"P  ¢q§  ¢ # @A!¡'  §…$   '!&§Q$%¡  ¢¤P  ¥    õ ' ÿ §©¥    $ # ¥       '%7 D'j§  5  !Ƨ þ § #I0 ¥   ' ÿ ' # ¢¤P  ¥x£¦¥ 0 $%!¡¢  ¦ $ # ¢ '!A8A õ ' ÿ §©¥    $V7 # ¥    $    $  !†2' 0 D'   # ¥ 0 ¥! # ý„þ § #I    §©¢¤§32' 0s0 ¥)    §©¥! #I     7 2  £¦¥ 0s0 ¥! # $  ¥12†£¦¥1§Qtj$%¢ !&§Q2$  2 ¡  §¨¥! ¦# ¢  ¢¤§I$%! #… ¥    § ¡ # $ # £ u# ý  '   0 ¥sY8 ¦(§ut i®úå —(’R­ © ˜d™„®—x®b¬ ª ­ ª •úçx—†®—(çx”be&™ êD¬¦å ”b•–™„ibe  õ ' ÿ §©¥    $ # ¥   ýCþCÿ¡  ¢¤£¦¥)5 ý„þ § #I    §©¢¤§3§©¥   $g2'!wv  5 ÿ $§©¥)£ õ  ! 0 '¦£  ¥ ý„þCÿ¡  ¢¤£¦¥y£  § þ § #“0 ¥y£¦¥ 0 $%!¡¢  ¡ $ # ¢ '!A8 9¨$%!&§x2¥ #©# ¥ §©¥12 # ¢ '!u!¡'  §k£¦'!¡!¡'!&§  ! 0 '¡£  ¥ ýCþCÿ¡  ¢¤£¦¥…£¦¥  $‡  $ # ¥7 „ '   0 ¥   ' ÿ ' # ¢¤P  ¥8 ú ¥ 0 '¦£  ¥ ýCþCÿ¡  ¢¤£¦¥C¥1§ # ' ÿ # ¥!  &$    !¡¥ 0‡¡ # ¢ 7  ¢ !  $   ¢¤§I$ # ¢ '!h£  § þ § #I0 ¥u!¡'!  ¢ !  $%¢   ¥u£¡$%!&§s£¦¥1§  '¢¤§©¢ !&$%t¥1§ £¦¥ N £¦¥D'¢ ! # § pi @ i ∈ {1, .., N} 2 ý '¢¤§©¢¤§q    $  $ ÿ  ¥ 0 ¥! # £¡$%!&§  õ ¥1§©&$2¥…$   # ¢¤2 ¡ $%¢   ¥8 A¥ 0 '¦£  ¥  ¢ !  $%¢   ¥‡£R¥ ¯ ``°)¥ # ¯ Y1ej°n$ C '¢¤§©¢ !&$%t¥(£ õ  !yD'¢ ! # pq ¥1§ # £¦'!¡!  &$   S Yc%U ˙z = Aqz + Bqτr + fq ¯ `bcR° '± z = ΘT XT ˙ΘT ˙XT T ¯ `T° Aq = 0 I −Wk −Wb pq ; Bq =     0 0 M−1 r 0     pq ¯ `%aj° Wk = Mr 0 0 Mo −1 JT r −G K Jr −GT Wb = Mr 0 0 Mo −1 JT r −G B Jr −GT ¥ # fq = −Aqzpi − Bq JT r pi Frpi ¯ `jd%° zpi = ΘT pi XT pi 0 0 T ¯ `%ej° K ¥ # B §©'! #B ¥1§ 0 $ #   ¢¤2¥1§A£¦¥   $%¢¤£¦¥    ¥ # £ õ $ 0 '   # ¢¤§I§©¥ 0 ¥! # £ õ  ! 0 '¦£  ¥  ¢¤§I2'%7W¥  $§ # ¢¤P  ¥x£R¥1§ „ '   2¥1§(£¦¥"2'! # $2 # §8BA¥r§ þ § #I0 ¥ ýCþCÿ¡  ¢¤£¦¥    § ¡ # $%! # ¥1§ # £¦'!¡!  £¦'!&2…&$    ¥1§ 0sˆ0 ¥1§  P  $ # ¢ '!&§ P  ¥r£¡$%!&§ ¯ YV°d@3'± ϕ(z) ¥1§ #‡ $y2'! Ç t    $ # ¢ '!E£  § þ § #I0 ¥r£¦¥ 0 $%!¡¢  ¡ $ # ¢ '!C£¦'!¡!  ¥…&$   ϕ(z) = ϕ(Θ) = Θ ¯ ` Ô ° êyxÏëF€rRQRQT„óôò¡¢Cízóôïìp£×ðBžñ‚ƒGg¢ìaóSRñUT¢CíwžñaîA‡£8ðBžñ‚ ðBžw„îw¥&eðBž…T„ói Džîtíw¥˜žì8ò‰ïïHR¡¥îX¢Cízóôïì 1cl 2cl 1l 2l 12θ 11θ21θ 22θ 4l 3l 3cl 4cl 2d 1d kgm 2= ml 6.0= ml† 3.0= ².01.0 mkgI = md 2.0‡ = md 5.0ˆ = kgm‰ 5.0= Paramètres B r a s i (i = 1 , …, 4 ) ¿ z ‚V…!…‘i3u  Â’gx“~Vz €  { xIv–u  w ‹ uH~¨Hƒƒd€%|Hw–xIvWz ƒd~Quv3{ u  w ‹ €bx“w–x“’nv–w„u ‹  õ ' ÿ §©¥    $ # ¥    $ #I $%¡  ¢¤P ¡ 5  !C§ þ § #I0 ¥…£¦¥ 0 $%!¡¢  ¡ $b7 # ¢ '!v2' 0 D'j§  £¦¥s£¦¥  4 0 $%!¡¢  ¡ $ # ¥    §g  $%!&$%¢   ¥1§5"£¦¥  4y£¦¥7 t    §)£¦¥  ¢ ÿ ¥   #I @ 0 $%!¡¢  ¡ $%! #k !u' ÿ €¥ # 8¡A¥Q§ þ § #I0 ¥¨2'!&§©¢¤£     ¥1§ # §I2 ý 0 $ # ¢¤§  £¡$%!&§  $ Ç t    ¥vdR8 A¥  ¥12 # ¥    £¦¥1§  $   ¢¤$ ÿ  ¥1§ $   # ¢¤2 ¡ $%¢   ¥1§)¥1§ # ΘT = [θ11, θ12, θ21, θ22] ¯ pqj° B$†£ þ !&$ 0 ¢¤P  ¥¨t  !    $  ¥¨£¦¥…2¥Q§ þ § #I0 ¥¨¥1§ # £¦'!¡!  ¥Q&$   ¯ Y1ej°d@ $  ¥12 Mr(Θ) ∈ R4×4 @ V (Θ, ˙Θ) ∈ R4×4 @ Gr(Θ) ∈ R4×1 @  $ 0 $ #   ¢¤2¥’Vj$2' ÿ ¢ ¥!¡!¡¥ Jr ∈ R4×4 8AA¥1§Q¥! #    ¥1§…£¦¥x2' 0s0 $%!&£¦¥ §©'! # ¥1§g2'    ¥1§ 0 ' # ¥    § τT r = [τ11, τ12, τ21, τ22] 8DA¥  ¥12d7 # ¥    £¦¥1§ „ '   2¥1§k£ õ ¢ ! # ¥   $2 # ¢ '!&§ FT r ¥1§ # £¦'!¡!  &$   FT r = [F1x F1y F2x F2y] ¯ p¡YV° 9¨$%!&§)!¡' #   ¥ #I £¦¥¨!¡'  §)$  '!&§ ¦# ¢  ¢¤§ ¨ !r' ÿ €¥ #   ¥12 # $%!¡t ¡ $%¢   ¥ $  ¥12  !¡¥ 0 $§I§©¥ mo ¥ #  !¡¥  $   t  ¥    d1 ¯ Ç t    ¥Qd%°d8fg'  §q§  ¦7 D'j§©'!&§†P  ¥  õ ' ÿ €¥ # ! õ ¥‚X¥12 #I ¥C$  2  !¡¥   ' # $ # ¢¤'!w86 õ ¥1P  $ # ¢ '! £ þ !&$ 0 ¢¤P  ¥…£¦¥  õ ' ÿ €¥ # X¥ ¦# $  '   §k§©¥…§©¢ 0   ¢ Ç ¥   5 Mo(X) ¨X + Go(X) − G(X)Fr = 0 ¯ pj`° fg'  §¨$  '!&§2'!&§©¢¤£    ( ! 0 '¦£  ¥  ¢¤§I2'%7  $§ # ¢¤P  ¥  ¢ !  $%¢   ¥ D'     ¥1§ „ '   2¥1§k£¦¥…2'! # $2 # 8 ÷ '    !¡' #   ¥…§ þ § #I0 ¥Q£¦¥ 0 $%!¡¢   7  $ # ¢ '!A@w!¡'  §…$  '!&§Q£¦¥  4vX'¢ ! # §(£¦¥x2'! # $2 # §¨¥! #   ¥  ¥1§…£¦¥  4 0 $%!¡¢  ¡ $ # ¥    §w¥ #B õ ' ÿ €¥ # 81A¥1§ 0 $ #   ¢¤2¥1§A£¦¥   $%¢¤£¦¥    ¥ # £ õ $ 0 '   7 # ¢¤§I§©¥ 0 ¥! # $    '! #   ¥1§©D¥12 # ¢  ¥ 0 ¥! #g $ „ '   0 ¥ K = diag(K1, K2) = diag(k1Id, k2Id) ¯ ppj° B = diag(B1, B2) = diag(b1Id, b2Id) ¯ p%cR° '± Id ∈ R2×2 ¥1§ #Q $ 0 $ #   ¢¤2¥†¢¤£¦¥! # ¢ #I 8 k1, k2, b1, b2 §©'! #Q ¥1§ &$   $ 0s#   ¥1§k£ C0 '¦£  ¥  ¢¤§I2'  $§ # ¢¤P  ¥8  õ ¥1§©&$2¥u£¦¥ #   $  $%¢  £¦¥C2 ý $P  ¥ 0 $%!¡¢  ¡ $ # ¥    ¥1§ # £R¢  ¢¤§  ¥! T    t¢ '!&§@&2 ý $P  ¥    t¢ '! (χi) „ '   0 ¥  !  '¢¤§©¢ !&$%t¥…£¦¥ π 6 rad 8 fg'  §2' 0 ÿ ¢ !¡'!&§  ¥1§2'! Ç t    $ # ¢ '!&§n£¦¥‡2 ý $P  ¥($   # ¢¤2 ¡ $ # ¢ '!A@ !¡'  §†' ÿ # ¥!¡'!&§ 25 2'! Ç t    $ # ¢ '!&§83A¥C§ þ § #I0 ¥C£¦¥ 0 $%!¡¢   7  $ # ¢ '!FX'j§I§  £¦¥  !y¥1§©&$2¥‡£¦¥ #   $  $%¢ A ¢ 0 ¢ #I @w2¥‡P  ¢    £  ¢ #¨ ¥ !¡' 0 ÿ¡  ¥s£¦¥x2'! Ç t    $ # ¢ '! Ç !&$  ¥s5 16 2'! Ç t    $ # ¢ '!&§ ¯ Ç t    ¥ e ¯ $j°©°d8‰w¥ 0 '¦£  ¥ ýCþCÿ¡  ¢¤£¦¥    § ¡ # $%! # ¥1§ #   ¥    §©¥! #I &$    $ Ç t    ¥…e ¯ ÿ °d8 q“ q” q• q– q— q˜ q™ qd q“e qf q“” q““ q“• q“– q“— q“˜ Initializatio n r“” r ”“ r•” r”• r –“ r“– r–”r”– r•— r—• r—d rfd r“ef r“e“” r“”“– r“—“– r“˜“—r“•“˜ r“•““ r ™“ “r™˜ r–˜ r˜– r—˜ r˜— r˜™ rd— r™drd™ r f“ e r“e™r ™“ e r““™ r“”“e r“““”r“”““ r“““• r“–“” r“•“–r“–“• r“˜“• r“–“— r“—“˜ rdf  x   Ã! ¿ z ‚V… g1…  x  ‰ îRu ‹ €%ƒdz ~v ‹ ŒVuA{ z ~V|©x“w„z ‹ xIv–z ƒd~ ‹ uH{ uHv–z ƒd~V~V| ‹ ”uvX{ u  w ‹ Hƒd~1}b‚  w–xIv–z ƒd~ ‹ x ‹–‹ ƒHz |Hu ‹ ”{ uw~Vƒd’)ÃVw„uAŒVuAHƒd~1}b‚  w–xIvWz ƒd~ ‹X‹ uAw„|HŒ  z v‚h Àih6Hƒd~1}b‚  w–x“v–z ƒd~ ‹ Œ  uHh6{¤ð u ‹ €bx“HuBŒVuwv–w–xHydx“z {%z ~VŒVz •  | ‹– w&{ xB}b‚  w„ud…  Ã! ‰ îDð x  v–ƒd’gxIv–u3x ‹–‹ ƒz |Bx  ’nƒŒVH{ uwŽ ñ ÃVw„z ŒVuBŒ k‹„ñ1‹ v–H’nuAŒVuA’gx“~Vz €  { xIv–z ƒd~j” rij u ‹ vD{ x6Hƒd~VŒVz v–z ƒd~ ŒVu6v–w–x“~ ‹ z v–z ƒd~QŒ  ’nƒŒVu i yuHw ‹ { u6’nƒŒVu j… A¥ 0 '¦£  ¥ ýCþCÿ¡  ¢¤£¦¥‡£  § þ § #I0 ¥†£¦¥ 0 $%!¡¢  ¡ $ # ¢ '!y¥1§ # £¦'!¡!  &$   ¯ `bcR°d@X$  ¥12  ¥1§&$   $ 0s#   ¥1§ Aq ∈ R14×14 , Bq ∈ R14×1 ¥ # fq ∈ R14×1 @  $s§©'   # ¢ ¥Q¥§ # £¦'!¡!  ¥Q&$   y = Cz @¡'± C = [ Id(7×7) 0(7×7) ] (7 × 14) ¯ pjT° ¥ # Id  $ 0 $ #   ¢¤2¥u¢¤£¦¥! # ¢ #I 8q9¨$%!&§  !ȧ þ § #I0 ¥C£¦¥ 0 $%!¡¢  ¡ $b7 # ¢ '!p$  ¥12x§©¥ ¡ ¥ 0 ¥! # £¦¥  4 0 $%!¡¢  ¡ $ # ¥    §@  $y2'! Ç t    $ # ¢ '! £  § þ § #I0 ¥…£¦¥ 0 $%!¡¢  ¡ $ # ¢ '!C5  !u¢ !&§ # $%! # £¦'!¡!  @¡D¥ ¦#gˆ#   ¥ ¥! „ '!&2 # ¢ '!‡£¦¥1§  $   ¢¤$ ÿ  ¥1§A£ õ  !‡§©¥ ¡j0 $%!¡¢  ¡ $ # ¥    §©¥ ¡ ¥ 0 ¥! # 8 9¨$%!&§g2¥…2$§  $ „ '!&2 # ¢ '!C£¦¥(2' 0s0‡¦# $ # ¢ '!u¥1§ # £¦'!¡!  ¥Q&$   ϕ(z) = ϕ(Θ1) = Θ1 ⇒ ϕ(Θ) ¯ paj° A¥1§×&$   $ 0s#   ¥1§ £  0 '¡£  ¥  ¢¤§I2'¦¥  $§ # ¢¤P  ¥ §©'! # K = diag(200, 200, 100, 100) ¥ # B = diag(50, 50, 25, 25) 8¡A¥1§k&$b7   $ 0s#   ¥1§"£¦¥  õýCþ § #I    §©¢¤§ ∆χ