Magnet free electric machines for automotive powertrains - M Nguyen

30/06/2016
Auteurs : Nguyen
Publication Journée 3EI 2016
OAI : oai:www.see.asso.fr:17049:17308
DOI :

Résumé

Magnet free electric machines for automotive powertrains - M Nguyen

Métriques

126
9
2.78 Mo
 application/pdf
bitcache://bdc1009a6e6f494f34a598bc1e19d12fb58a9861

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Organisateurs

logo_see.gif
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/17049/17308</identifier><creators><creator><creatorName>Nguyen</creatorName></creator></creators><titles>
            <title>Magnet free electric machines for automotive powertrains - M Nguyen</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2016</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sun 11 Sep 2016</date>
	    <date dateType="Updated">Sun 11 Sep 2016</date>
            <date dateType="Submitted">Mon 10 Dec 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">bdc1009a6e6f494f34a598bc1e19d12fb58a9861</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>29260</version>
        <descriptions>
            <description descriptionType="Abstract"></description>
        </descriptions>
    </resource>
.

Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY MAGNET FREE ELECTRIC MACHINES FOR AUTOMOTIVE POWERTRAINS Thanh Nguyen, Renault Guyancourt France 2Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY 01 INTRODUCTION • EV Market background • Motor main stakes 02 ELECTRIC POWERTRAINS TECHNOLOGIES COMPARISON 03 FOCUS ON EXTERNALLY EXCITED SYNCHRONOUS MACHINE (EESM) • EESM Challenges • Renault’s EESM Products 04 FUTURE E-MOTOR OUTLOOK OUTLINE 3Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY INTRODUCTION • EV Market background • Motor main stakes 01 4Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY 35 590 56 177 91 423 0 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000 90 000 100 000 2011 2012 2013 World Market Worldwide EV sales are steadily growing Since 1995 Renault has launched several EV generation 1995 : Renault Electric Clio 2000 : Renault Kangoo Electri’City electrified vehicles : Kangoo ZE 2011 Fluence ZE 2011 EV specific : ZOE 2012 Twizy 2012 114 years later after first attempt : this launch seems to be the good one for EV’s ! 1899 : The « Jamais Contente » 5Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY THE RENAULT EV HISTORY Express Clio I Kangoo I Volume of production 500 500 500 (350 EV, 150 Range extender) Years of production 1996 – 1999 1996 – 1998 2001 – 2003 Motor power 22 kW 22 kW 22 – 29 kW Motor technology Direct Current Direct Current EESM Max speed 85 km/h 90 km/h 110 km/h Autonomy 100 km 87 km 92 km Energy battery 15 kWh 11 kWh 13 kWh Voltage battery 108 V 114 V 132 V Technology battery Ni Cd Ni Cd Ni Cd *EESM : Externally Excited Synchronous Motor 6Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY THE RENAULT EV RANGE 2011 Fluence Z.E. Mot. power 70 kW Max speed 135 km/h Autonomy 185 km 2012 Kangoo Z.E. Mot. power 44 kW Max speed 130 km/h Autonomy 170 km Twizy Mot. power 13 kW Max speed 80 km/h Autonomy 100 km Zoé Mot. power 65 kW Max speed 135 km/h Autonomy 210 km Externally excited synchronous motor Externally excited synchronous motor Induction motor Externally excited synchronous motor 7Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Most of the current EV motors use permanent magnets Benefits Motor high compactness Low rotor losses Good efficiency at high torque Cooling only by stator possible Issues Cost Cost level : 1/3 of total motor cost Cost instability : high uncertainty on magnets cost (rare earth issue) Temperature resistance Demagnetization risk growing at high temperature Field weakening requests current Losses at high speed & Low torque Safety: uncontrolled regenerative voltage in failure mode 8Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY 0 200000 400000 600000 800000 1000000 1200000 1400000 1600000 1800000 2000000 04/01/2011 04/03/2011 04/05/2011 04/07/2011 04/09/2011 04/11/2011 04/01/2012 04/03/2012 04/05/2012 04/07/2012 04/09/2012 04/11/2012 04/01/2013 04/03/2013 04/05/2013 04/07/2013 04/09/2013 04/11/2013 04/01/2014 RMB/KG Date Nd price 2011/01/01~2014/02/10 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 04/01/2011 04/03/2011 04/05/2011 04/07/2011 04/09/2011 04/11/2011 04/01/2012 04/03/2012 04/05/2012 04/07/2012 04/09/2012 04/11/2012 04/01/2013 04/03/2013 04/05/2013 04/07/2013 04/09/2013 04/11/2013 04/01/2014 RMB/KG Date Dy price 2011/01/01~2014/02/10 2200 € /kg 280 € /kg Rare earths cost instability Uncertainty : factor of 10 ! Dysprosium case Neodymium case 9Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Magnet free alternatives : 3 main families Permanent magnet motor (PMM) Induction Motor (IM) Switched Reluctance Motor (SRM) Externally Excited Synchronous Motor (EESM) 10Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY ELECTRIC POWERTRAINS TECHNOLOGIES COMPARISON 02 11Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY What do we expect from an EV motor ? High starting torque Wide constant power range High maximum speed Only one gear ratio Good efficiency Range maximization Easy cooling Low cost inverter Low phase current Low and stable cost Affordable material & process Robustness Harsh environment Severe customer usage 12Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Electric powertrains technologies comparison e-PWT features e-PWT costs EESM : Externally Excited Synchronous Machine PMSM: Permanent Magnet Synchronous Machine SRM: Switched Reluctance Machine IM : Induction Machine Safety fail silent Conditions : - IM and SRM: natural - EESM : specific motor control - PMSM: specific hardware design System efficiency Weight / Size High rot. speed Wide constant power range Robustness e-machine cost Inverter cost Cost instability First development D&D cost Manufacturing line cost 13Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Renault current orientation Permanent magnet motor (PMM) Induction Motor (IM) Switched Reluctance Motor (SRM) Externally Excited Synchronous Motor (EESM) Renault current EV motors 14Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY FOCUS ON EXTERNALLY EXCITED SYNCHRONOUS MACHINE • EESM Challenges • Renault’s EESM Products 03 15Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY EESM Technology challenges Motor control Cooling Brush and slip ring system Rotor mechanical strength Rotor winding process 16Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY EESM challenges : motor control 3 parameters instead of 2 commonly used to control the motor Therefore, many possible { Id, Iq, If } combinations DC voltage Torque, Speed Id, Iq, If Id, Iq, If Id, Iq, If Efficiency Optimization N (rpm) T(N.m) Id 5 kW -5 kW 10 kW -10 kW 20 kW -20 kW 30 kW -30 kW 40 kW -40 kW 50 kW -50 kW 60 kW -60 kW 0 2000 4000 6000 8000 10000 12000 -200 -150 -100 -50 0 50 100 150 200 -250 -200 -150 -100 -50 0 N (rpm) T(N.m) Iq 5 kW -5 kW 10 kW -10 kW 20 kW -20 kW 30 kW -30 kW 40 kW -40 kW 50 kW -50 kW 60 kW -60 kW 0 2000 4000 6000 8000 10000 12000 -200 -150 -100 -50 0 50 100 150 200 -300 -200 -100 0 100 200 N (rpm) T(N.m) If 5 kW -5 kW 10 kW -10 kW 20 kW -20 kW 30 kW -30 kW 40 kW -40 kW 50 kW -50 kW 60 kW -60 kW 0 2000 4000 6000 8000 10000 12000 -200 -150 -100 -50 0 50 100 150 200 0 2 4 6 8 10 12 Id = f(T,N) @ 300V Iq = f(T,N) @ 300V If = f(T,N) @ 300V (Id,Iq,If) control maps to determine for each (torque, speed) operating point & DC voltage Criteria - Cos φ=1 - Inverter+motor losses mini Challenge 17Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY EESM challenges : motor control High Static & dynamic coupling between stator & rotor windings ( ) dt dI M dt dI LIRV IMIL dt dI LIRV dt dI MIL dt dI LIRV d sf f ffff ffsdd q qqsq f fsqq d ddsd .. 2 3 .. ..... ..... ++= +++= +−+= ω ω Control oscillations between rotor & stator windings coming from perturbancies : Space harmonics stator induced voltage Inverter non-linearity Eccentricity Challenge 18Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY EESM challenges : Cooling Reliability Electrical insulation integrity Rotor mechanical strength Copper losses Handle stator & Rotor losses Stakes Challenge Air flow split rotor /stator Air flow and losses are independent Electrical Insulation in wet condition Direct air cooling Indirect water cooling Challenge Rotor heat extraction Continuous motor performance 19Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Brush and slip ring system Brush wear Variable climatic conditions Vibrations Pollutions Material choice robustness to climatic conditions Ring diameter mechanical wear Brush cross section current density Spring force : electric vs mech. wear Challenge - Tricky design and tuning - No lifetime issue for automotive applications 20Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Rotor Challenges : Winding process :Mechanical strength : Optimized wire position (high slot fill factor) Accurate position in the slot (cooling, mechanical strength…) Process setup with pole number > 4 Minimum process cycling time Avoid any component ejection (rotor burst = safety risk) Keep electrical insulation resistance after speed and thermal cycling 21Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY EESM already used in Renault vehicles 70 / 65 / 44 kW 226 / 220 N.m on rotor shaft Fluence, Zoe, Kangoo 22Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY First Electric Powertrain based on EESM designed and produced by Renault 65 kW 220 N.m on rotor shaft Very low phase current Range 240km [R240] 23Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY First Electric Powertrain based on EESM designed and produced by Renault • +20km autonomy range on Zoe (motor gain) • -10% improved packaging • Motor family for smaller and bigger EV Range 240km [R240] 24Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Renault manufacturing line Stator line Stator winding machine Rotor line Assembly line 25Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Future E-MOTOR OUTLOOK 04 26Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY IM Key parameters might change in the next future TOMORROWTODAY Incentives Incentives reduction / deletion Weak charging infrastructure Strong charging infrastructure Battery & Power Electronics current performance Current raw material costs Raw material costs situation ? Very high efficiency Low current inverter Magnet free New typical mission profile ? New motor / PE trade off Battery & Power Electronics future performance PMSM EESM ? EESM ... PMSM SRM IM 27Electric & Hybrid Powertrain Design Division 3EI CNAM Paris June 2016 RENAULT PROPERTY Conclusion • EESM motor technology development is a long path … PMSM or IM motor technology is easier to adopt in comparison • Future EV requirements + power semi-conductor and rare-earth permanent magnet cost trends may modify the traction system trade-offs • For first time in-house development, Renault has chosen quite conservative design, materials and process • New optimized EESM design shows improvement levers: • Improved cooling & materials for smaller size & cost • Power density achievement similar to best-in-class PMSM