Heights of toric varieties, integration over polytopes and entropy

28/10/2015
Publication GSI2015
OAI : oai:www.see.asso.fr:11784:14286

Résumé

We present a dictionary between arithmetic geometry of toric varieties and convex analysis. This correspondence allows for effective computations of arithmetic invariants of these varieties. In particular, combined with a closed formula for the integration of a class of functions over polytopes, it gives a number of new values for the height (arithmetic analog of the degree) of toric varieties, with respect to interesting metrics arising from polytopes. In some cases these heights are interpreted as the average entropy of a family of random processes.

Heights of toric varieties, integration over polytopes and entropy

Collection

application/pdf Heights of toric varieties, integration over polytopes and entropy José Ignacio Burgos Gil, Patrice Philippon, Martin Sombra
Détails de l'article
We present a dictionary between arithmetic geometry of toric varieties and convex analysis. This correspondence allows for effective computations of arithmetic invariants of these varieties. In particular, combined with a closed formula for the integration of a class of functions over polytopes, it gives a number of new values for the height (arithmetic analog of the degree) of toric varieties, with respect to interesting metrics arising from polytopes. In some cases these heights are interpreted as the average entropy of a family of random processes.
Heights of toric varieties, integration over polytopes and entropy

Média

Voir la vidéo

Métriques

110
8
153.1 Ko
 application/pdf
bitcache://3541a3341efe8a242306d122c633b3921a00b873

Licence

Creative Commons Attribution-ShareAlike 4.0 International

Sponsors

Organisateurs

logo_see.gif
logocampusparissaclay.png

Sponsors

entropy1-01.png
springer-logo.png
lncs_logo.png
Séminaire Léon Brillouin Logo
logothales.jpg
smai.png
logo_cnrs_2.jpg
gdr-isis.png
gdrmia_logo.png
logo_x.jpeg
logo-lix.png
logorioniledefrance.jpg
isc-pif_logo.png
logo_telecom_paristech.png
csdcunitwinlogo.jpg
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/11784/14286</identifier><creators><creator><creatorName>José Ignacio Burgos Gil</creatorName></creator><creator><creatorName>Patrice Philippon</creatorName></creator><creator><creatorName>Martin Sombra</creatorName></creator></creators><titles>
            <title>Heights of toric varieties, integration over polytopes and entropy</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2015</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sun 8 Nov 2015</date>
	    <date dateType="Updated">Wed 31 Aug 2016</date>
            <date dateType="Submitted">Tue 13 Nov 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">3541a3341efe8a242306d122c633b3921a00b873</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>24674</version>
        <descriptions>
            <description descriptionType="Abstract">
We present a dictionary between arithmetic geometry of toric varieties and convex analysis. This correspondence allows for effective computations of arithmetic invariants of these varieties. In particular, combined with a closed formula for the integration of a class of functions over polytopes, it gives a number of new values for the height (arithmetic analog of the degree) of toric varieties, with respect to interesting metrics arising from polytopes. In some cases these heights are interpreted as the average entropy of a family of random processes.

</description>
        </descriptions>
    </resource>
.