Finite polylogarithms, their multiple analogues and the Shannon entropy

28/10/2015
Publication GSI2015
OAI : oai:www.see.asso.fr:11784:14285

Résumé

We show that the entropy function–and hence the finite 1-logarithm–behaves a lot like certain derivations. We recall its cohomological interpretation as a 2-cocycle and also deduce 2n-cocycles for any n. Finally, we give some identities for finite multiple polylogarithms together with number theoretic applications.

Finite polylogarithms, their multiple analogues and the Shannon entropy

Collection

application/pdf Finite polylogarithms, their multiple analogues and the Shannon entropy Philippe Elbaz-Vincent, Herbert Gangl
Détails de l'article
We show that the entropy function–and hence the finite 1-logarithm–behaves a lot like certain derivations. We recall its cohomological interpretation as a 2-cocycle and also deduce 2n-cocycles for any n. Finally, we give some identities for finite multiple polylogarithms together with number theoretic applications.
Finite polylogarithms, their multiple analogues and the Shannon entropy

Média

Voir la vidéo

Métriques

140
9
483.16 Ko
 application/pdf
bitcache://6b8ff681adf618fd90003ae78c3e5ed4d8f93196

Licence

Creative Commons Attribution-ShareAlike 4.0 International

Sponsors

Organisateurs

logo_see.gif
logocampusparissaclay.png

Sponsors

entropy1-01.png
springer-logo.png
lncs_logo.png
Séminaire Léon Brillouin Logo
logothales.jpg
smai.png
logo_cnrs_2.jpg
gdr-isis.png
gdrmia_logo.png
logo_x.jpeg
logo-lix.png
logorioniledefrance.jpg
isc-pif_logo.png
logo_telecom_paristech.png
csdcunitwinlogo.jpg
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/11784/14285</identifier><creators><creator><creatorName>Philippe Elbaz-Vincent</creatorName></creator><creator><creatorName>Herbert Gangl</creatorName></creator></creators><titles>
            <title>Finite polylogarithms, their multiple analogues and the Shannon entropy</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2015</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sun 8 Nov 2015</date>
	    <date dateType="Updated">Wed 31 Aug 2016</date>
            <date dateType="Submitted">Tue 13 Nov 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">6b8ff681adf618fd90003ae78c3e5ed4d8f93196</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>24673</version>
        <descriptions>
            <description descriptionType="Abstract">
We show that the entropy function–and hence the finite 1-logarithm–behaves a lot like certain derivations. We recall its cohomological interpretation as a 2-cocycle and also deduce 2n-cocycles for any n. Finally, we give some identities for finite multiple polylogarithms together with number theoretic applications.

</description>
        </descriptions>
    </resource>
.