Finite polylogarithms, their multiple analogues and the Shannon entropy

28/10/2015
Publication GSI2015
OAI : oai:www.see.asso.fr:11784:14285

Résumé

We show that the entropy function–and hence the finite 1-logarithm–behaves a lot like certain derivations. We recall its cohomological interpretation as a 2-cocycle and also deduce 2n-cocycles for any n. Finally, we give some identities for finite multiple polylogarithms together with number theoretic applications.

Finite polylogarithms, their multiple analogues and the Shannon entropy

Collection

application/pdf Finite polylogarithms, their multiple analogues and the Shannon entropy Philippe Elbaz-Vincent, Herbert Gangl

Média

Voir la vidéo

Métriques

139
9
483.16 Ko
 application/pdf
bitcache://6b8ff681adf618fd90003ae78c3e5ed4d8f93196

Licence

Creative Commons Attribution-ShareAlike 4.0 International

Sponsors

Organisateurs

logo_see.gif
logocampusparissaclay.png

Sponsors

entropy1-01.png
springer-logo.png
lncs_logo.png
Séminaire Léon Brillouin Logo
logothales.jpg
smai.png
logo_cnrs_2.jpg
gdr-isis.png
logo_gdr-mia.png
logo_x.jpeg
logo-lix.png
logorioniledefrance.jpg
isc-pif_logo.png
logo_telecom_paristech.png
csdcunitwinlogo.jpg
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/11784/14285</identifier><creators><creator><creatorName>Philippe Elbaz-Vincent</creatorName></creator><creator><creatorName>Herbert Gangl</creatorName></creator></creators><titles>
            <title>Finite polylogarithms, their multiple analogues and the Shannon entropy</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2015</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sun 8 Nov 2015</date>
	    <date dateType="Updated">Wed 31 Aug 2016</date>
            <date dateType="Submitted">Fri 20 Apr 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">6b8ff681adf618fd90003ae78c3e5ed4d8f93196</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>24673</version>
        <descriptions>
            <description descriptionType="Abstract">
We show that the entropy function–and hence the finite 1-logarithm–behaves a lot like certain derivations. We recall its cohomological interpretation as a 2-cocycle and also deduce 2n-cocycles for any n. Finally, we give some identities for finite multiple polylogarithms together with number theoretic applications.

</description>
        </descriptions>
    </resource>
.