Cluster Analysis

21/09/2014
Auteurs :
Publication MaxEnt 2014
OAI : oai:www.see.asso.fr:9603:11319
DOI :

Résumé

Cluster Analysis

Métriques

23
6
46.94 Ko
 application/pdf
bitcache://edfec88470b59a9f63ae79df38ed27a4b070e0b5

Licence

Creative Commons Aucune (Tous droits réservés)

Sponsors

Sponsors scientifique

logo_smf_cmjn.gif
smai.png

Sponsors logistique

logo_cnrs_2.jpg
logo_supelec.png
logo-universite-paris-sud.jpg
logo_see.gif

Sponsors financier

bsu-logo.png
entropy1-01.png
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/9603/11319</identifier><creators><creator><creatorName>John Skilling</creatorName></creator></creators><titles>
            <title>Cluster Analysis</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2014</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sat 30 Aug 2014</date>
	    <date dateType="Updated">Mon 2 Oct 2017</date>
            <date dateType="Submitted">Tue 13 Nov 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">edfec88470b59a9f63ae79df38ed27a4b070e0b5</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>34205</version>
        <descriptions>
            <description descriptionType="Abstract"></description>
        </descriptions>
    </resource>
.

Cluster Analysis John Skilling (skilling@eircom.net) What is a cluster? (a) (b) (c) (d) alphabet xlphabet alxhabet alphxbet alphabxt omegabet oxegabet omexabet omegaxet omegabex fox sparrow cat dog eagle The common feature in problems such as these is not anything specific to the type of application, but a notion of separation between items. Clearly the idea of separation does underlie clustering, so — if there is a general clustering procedure at all — it must be based only on this common feature. Symmetry arguments relating to inter-item separations then suggest a specific procedure based on information (not geometry), which can nevertheless be used flexibly having regard to the quirks of a particular application.