S.2.3 Lightning Casualties and Damages in China

13/03/2014

Auteurs :

Publication ILPS2014 International Lightning Protection Symposium

OAI : oai:www.see.asso.fr:9740:9948

DOI :

Abstract

Authors

Qing Meng

S.2.3 Lightning Casualties and Damages in China

Wenjuan Zhang

S.2.3 Lightning Casualties and Damages in China

Yijun Zhang

S.2.3 Lightning Casualties and Damages in China
La SEE (Société de l’Electricité, de l’Electronique et des Technologies de l’Information et de la Communication – Association reconnue d’utilité publique, régie par la loi du 1er juillet 1901) met à la disposition de ses adhérents et des abonnés à ses publications, un ensemble de documents numériques accessibles à partir de son portail des publications. Ces documents incluent notamment les articles des revues REE, 3 EI et e-STA disponibles sous forme numérique ainsi que des publications additionnelles regroupées dans l’espace eREE. Les présentes conditions précisent les conditions de diffusion et d’utilisation de ces documents et des informations qu’ils contiennent. L’accès à ces documents, qu’il se fasse de façon gratuite ou dans le cadre d’abonnements ou d’achats faits à titre onéreux, implique l’acceptation sans restriction de ces dispositions.

Droits de propriété et de diffusion des contenus téléchargés sur le portail des publications

Les contenus rendus accessibles sur le portail des publications sont, en règle générale, protégés par le droit d’auteur. En tant que producteur, et le cas échéant d’auteur, des informations rassemblées dans les contenus accessibles par ce portail, SEE se réserve l’exclusivité des droits de copie et de diffusion de tout ou partie de ces contenus.

Les contenus sont rendus accessibles à titre individuel, pour les besoins de la personne en détenant des droits d’accès en cours de validité. Aussi, la modification, la reproduction et/ou la diffusion via Internet ou le Web, intranet, extranet ou toute autre forme numérique ou imprimée, de tout ou partie des contenus téléchargés sont interdites. Une tolérance est consentie quant à la reproduction d’extraits limités de ces contenus, dans le cadre de travaux ou d’activités auxquels ils sont utiles, à la condition que l’origine de ces reproductions partielles soit mentionnée de façon lisible et sans ambiguïté. Figureront en particulier : la REE (ou toute autre revue accessible sur le portail) en tant que la source, la référence de la publication et le nom de l’auteur (s’il figure dans la revue).

Ces dispositions s’appliquent également aux figures, illustrations, logos ou images.

Publication externe des contenus du portail des publications

Tout extrait des contenus du portail destiné à être utilisé dans des publicités, des communiqués de presse ou du matériel de promotion nécessite un accord préalable écrit de la SEE. Une version préliminaire du document proposé contenant ces extraits doit accompagner chacune de ces demandes. SEE se réserve le droit de refuser un tel usage externe pour quelque raison que ce soit.
Responsabilités

La SEE apporte tout le soin possible à la préparation des informations délivrées dans les contenus produits. Cependant elle ne peut être tenue pour responsable d’aucune perte ou frais qui pourrait résulter d'imprécisions, d'inexactitudes, d'erreurs ou de possibles omissions portant sur des informations publiées, ni des résultats obtenus par l'utilisation et la pratique des informations délivrées.

Utilisation des informations recueillies lors du téléchargement de contenu

Le portail des publications est susceptible d'utiliser des « cookies » afin notamment de permettre l'utilisation de paniers d'achat et de personnaliser les parcours sur le site. SEE se réserve la possibilité d'utiliser les informations recueillies lors des téléchargements pour ses besoins internes et notamment pour l'amélioration de ses services, sans qu'elles puissent être cédées à des partenaires commerciaux. Conformément à la loi "informatique et libertés" du 6 janvier 1978, chaque utilisateur du portail dispose d'un droit d'accès et de rectification aux informations qui le concernent. Pour exercer ce droit, les utilisateurs doivent s'adresser àSEE – 17 rue de l'amiral Hamelin – 75783 Paris Cedex 16, par simple lettre ou en utilisant le formulaire de contact disponible sur son site.

Paris, le 28 avril 2013

Sponsors

Co-organizers

ilpa_logo.png

Metadata Datacite XML candidate:

<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://datacite.org/schema/kernel-4"
 <identifier identifierType="DOI">10.23723/9740/9948</identifier>
 <creators>
 <creator><creatorName>Qing Meng</creatorName></creator>
 <creator><creatorName>Yijun Zhang</creatorName></creator>
 </creators>
 <titles>
 <title>S.2.3 Lightning Casualties and Damages in China</title>
 </titles>
 <publisher>SEE</publisher>
 <publicationYear>2014</publicationYear>
 <resourceType resourceTypeGeneral="Text">Text</resourceType>
 <dates>
 <date dateType="Created">Wed 26 Feb 2014</date>
 <date dateType="Updated">Tue 13 Jun 2017</date>
 <date dateType="Submitted">Sun 6 Oct 2019</date>
 </dates>
 <alternateIdentifiers>
 <alternateIdentifier alternateIdentifierType="bitstream">93ab8abf01fa4bf843c7acc6010fbaacc7bca249</alternateIdentifier>
 </alternateIdentifiers>
 <formats>
 <format>application/pdf</format>
 </formats>
 <version>32819</version>
 <descriptions>
 <description></description>
 </descriptions>
</resource>
Lightning Casualties and Damages in China

I. INTRODUCTION

Lightning is one of the severe hazards to people and infrastructure in the world. Hundreds of fatalities and millions of dollars in damage to buildings, power lines, electrical systems are caused by lightning every year. A worldwide of 24,000 deaths and 240,000 injuries from lightning per year was estimated [1]. Lightning is near the top of the list of all types of weather-related deaths in the United States, only fatalities from flash and river floods rank higher [2]. The deaths due to lightning during 1940 to 1973 in the United States is higher than the number caused by tornadoes and hurricanes together [3]. Therefore, a complete national description of lightning casualties and damages is essential to improving awareness of this hazard. Such information is critical for understanding the risks of lightning to general public and sensitive industries, sectors, and activities. It is also essential for evaluating the effectiveness of monitoring and warning information and associated short- and longer-term responses [4]. Studies on lightning-related casualties and damages have been carried out in many countries [5,6,7,8]. Focus of these studies are mainly on quantifying lightning fatality and injuring statistics, identifying human injury mechanisms [9,10] and giving suggestions to lightning protection. The objective of this article is to investigate the characteristics of lightning hazards in China from 1997 to 2009, and to improve understanding of the impact of lightning in terms of fatalities, casualties and property damages. The first section of the article is an overview of lightning hazards studies and its significance. The second section introduces the data sources and lightning reporting methods in China. Then, characteristics of lightning casualties and damages in China are described, with respect to time, space, rural and urban, circumstances and locations. Finally, the article concludes with a summary of results and recommendations for future work.

II. METHODOLOGY

The data source used in this study was from the National Lightning Hazards Database (NLHD), which includes lightning-related reports from 31 provinces in Mainland China. The NLHD employs a province-municipality-county three-level reporting system. The county level weather bureaus are the basic reporting departments. When lightning strike occurs, working staffs of county weather bureaus are sent to scene for investigation and verification, and record the detail information. Each county weather bureau reports lightning-related fatalities, injuries and damages to its municipal weather bureau every month, and the municipal weather bureaus then compile all the reports occurring within the area of responsibility and report to its provincial weather bureau. Finally, the 31 provincial weather bureaus report to the CMA and the CMA compiles the reports in the whole country in that month. At the end of each year, different level weather bureaus make a supplementary report if there is any missing report in monthly reports. After that, all the reports from 31 provinces in that year are combined by headquarter in CMA and then added to the NLHD. The advantage of these records in the database is that they are derived from every county weather bureau throughout the country and compiled by CMA headquarter with consistent principle and standard. The records consist of not only fatalities and injuries, but also property damages by lightning strikes. The following information is required in each lightning strike report: a) Year, month, day and time of the event; b) Locality of the event; c) Number and location of fatality/injury; d) Direct/indirect economic loss of the damage. The following information is optional: e) Gender and age of fatality/injury; f) Industry of the damage; g) Circumstances/activity during incident; h) Degree/type of injury. In total, the NLHD contains 5033 fatalities, 4670 injuries, and 61614 damage reports from all provinces in China from 1997 to 2009. Lightning-related casualties and damages generally spread out during the year and throughout the nation, so they receive less attention than the large-impact events and are usually underreported. A few researchers have attempted to estimate the underreporting by evaluating data from multiple sources. López et al. found that Storm Data underreported lightning deaths by 28% and injuries by 42% in the period 1980-1991 in Colorado [3]. Mogil et al. found 33% more lightning deaths in Texas than reported in Storm Data [11]. Mills et al. indicated the mortality underestimation in the United States ranges from 17% to 33% [4]. Lightning may consistently cause more damage than any other weather phenomenon when other unquantified losses are considered [2]. In China, underreporting of lightning-related fatalities and injuries mainly result from the traditional beliefs and superstition on lightning casualty, particularly in rural and small urban areas. Nevertheless, the NLHD is a consistent data source on lightning incidents in meteorological department in China for its standardized reporting protocol and coding for all variables. III. RESULTS AND DISCUSSION

A. Variations by Province

From 1997 to 2009, the total number of lightning-related fatality, injury, casualty and damage report are 5033, 4670, 9703 and 61614, respectively. Guangdong has the highest fatalities, casualties and damage reports while
Yunnan has the most lightning injuries. Both of the provinces locate in south China. Figure 1 shows the rank of lightning-related casualties (Fig. 1a) and damages (Fig. 1b) by step of 8 in rank. For lightning casualties, the top 8 provinces are Guangdong, Yunnan, Jiangxi, Guizhou, Guangxi, Hunan, Sichuan and Hubei, all of which are in the south and have higher lightning frequency then other provinces. For damage reports, Guangdong has the highest number and has more than three times as many as the second rank (Hunan). Lightning caused most damages in the eastern coastal provinces and least in the western area in China (Fig. 1b). B. Variations by Province Weighted by Population Form the rate and rank of lightning-related fatalities, injuries, casualties and damage reports from each province weighted by population, for lightning casualty rate, the top two are Tibet and Hainan, which were 17th and 11th in number of casualties. When taking population into account, the maxima shift from southern and eastern provinces (Fig. 1a) to less populated regions such as Tibet, Hainan and Qinghai in west regions (Fig. 2a). Similar results of casualty rate per population in the United States were also shown in [2]. They found the main effect of taking population into account is to shift maxima from populous eastern states as Florida and Michigan to the Rocky Mountain and plains states as Wyoming and New Mexico. The other six provinces in the first class of casualty rate weighted by population are Yunnan, Qinghai, Jiangxi, Guizhou, Guangdong and Fujian. The ranks of populous provinces such as Henan, Shandong and Sichuan degrade, with casualty rank of 15th, 10th, and 7th to 26th, 20th and 15th. Except for Tibetan Plateau area, provinces with high casualty rate are located in south China. The ranks of casualty rate in northwest provinces are still low (Fig. 2a). Fig. 1. The rank of each province in number of lightning-related casualties (a) and damage reports (b) in Mainland China from 1997 to 2009. The names of the 31 provinces are shown in the figure. The national average fatality and injury per year are 387 and 359 in Mainland China from 1997 to 2009, while the numbers in the United States are 90 and 273 from 1959 to 1994 according to [2]. Although lightning-related casualty in China is twice as much as the number in the United States every year, the rate per million people is lower. The rates for fatality and injury per million people per year were 0.42 and 1.26 in the United States for 1959-94 [2] and 0.31 and 0.28 in China for 1997-2009. The rate of fatality in China is one-fifth the rate of 1.7 in Singapore from 1961 to 1979 [12], and one-fifteenth the rate of 15.5 in Swaziland from 2000 to 2007 [8], the highest recorded in the world now. In contrast, the fatality rate of 0.31 in China is much higher than the 0.008 rate in Australia for 1910-89 [6], and the 0.05 in the United Kingdom for 1993-99 [7] and 0.17 in France for 1979-96 [13].

Fig. 2. The rank of each province in the rate of lightning-related casualties (a) and damage reports (b) in Mainland China from 1997 to 2009. C. Time Variations The year-to-year variations of lightning-related fatalities, injuries and damage reports in Mainland China from 1997 to 2009 are shown in Fig. 3. The number of lightning fatalities and injuries increased from 144 and 169 in 1997 to the maxima of 827 and 718 in 2007 and then decreased to 371 deaths and 310 injuries in 2009. The widely use of electric equipments in modern days caused lightning damage reports increase all along the period, only with a low value in 2008 (Fig. 3). Lightning casualties and damages were very low from 1997 to 2001. It was likely an underestimate resulting from underreporting in rural areas at that time. The sharp increase in year 2002 could be attributed mainly to the improved reporting procedure, especially in rural areas. Although lightning damage reports increased all along this period, fatalities and injuries began to drop since 2008. The drop of casualties in the last two years of the record may owe to improved forecasts and warnings, better awareness of the lightning threat, more substantial buildings available for safe refuge, medical care and emergency communications and other socioeconomic changes (López and Holle 1996; Holle and López 2003). Fig. 3. Year-to-year variations of lightning-related fatalities, injuries and damage reports in Mainland China from 1997 to 2009. Lightning casualties and damages occur all through the year in China, but most of the events are during summer months from June to August. Lightning fatalities, injuries and damages in these three months account for 72%, 67% and 63% of the whole year and July has the maximum percentage frequencies for all categories. The greatest number of casualties and damages are in July (26% and 21%) with the second most in June (23%) for casualties and August (21%) for damages. The peak months from June to August are also the period of intense thunderstorm activities in China. During the winter months from November to February of the following year, the number of lightning fatalities, injuries and damage reports are the lowest in the year. The monthly variations of lightning casualties and damages in China show the same pattern with that in the United States [2]. D. Rural and Urban Casualties It is noticed that a large number of fatalities and injuries occur in rural areas in China (Fig. 4). Rural regions account for 51% and 29% of all lightning fatalities and injuries reported from 1997 to 2009. Lightning casualties in urban areas only account for 6%. If taking no account of unknown factors (14%), rural regions account for 93% of all lightning casualties. The large proportion of casualties is attributed to the working style, living environment and medical treatment in rural settings in China. Firstly, rural people in China continue to rely on labor-intensive agriculture, where people are more exposed to the lightning threat. From the analysis of lightning-related locations, the largest proportion of fatalities and injuries in China occurs when people are working on farms. Secondly, dwellings in rural regions are often poorly grounded and built in exposed areas, which increase the chance of direct lightning strikes on people. Furthermore, considerable lightning strikes in rural regions occur in remote mountainous areas, where communication and transportation are underdeveloped and lack of resuscitation techniques. According to [14], nearly 75 percent of those who suffered cardiopulmonary arrest from lightning injuries died, many because cardiopulmonary resuscitation was not attempted. All the factors above result the large casualties in rural regions. When taking population into account, the maxima shift from southern and eastern provinces (Fig. 1a) to less populated regions such as Tibet, Hainan and Qinghai in west regions (Fig. 2a). Similar results of casualty rate per population in the United States were also shown in [2]. They found the main effect of taking population into account is to shift maxima from populous eastern states as Florida and Michigan to the Rocky Mountain and plains states as Wyoming and New Mexico. The other six provinces in the first class of casualty rate weighted by population are Yunnan, Qinghai, Jiangxi, Guizhou, Guangdong and Fujian. The ranks of populous provinces such as Henan, Shandong and Sichuan degrade, with casualty rank of 15th, 10th, and 7th to 26th, 20th and 15th. Except for Tibetan Plateau area, provinces with high casualty rate are located in south China. The ranks of casualty rate in northwest provinces are still low (Fig. 2a).
IV. CONCLUSION

Lightning is a common meteorological hazard in China that leads to fatalities, injures and large amount of economic losses. Based on the National Lightning Hazards Database, lightning-related fatalities, injuries, casualties and damage reports from 1997 to 2009 were summarized. Large casualties and damage reports were located in south and east China. When taking population into account, the maxima shift from southern and eastern provinces to low population provinces such as Tibet, Hainan and Qinghai and the ranks of populous provinces such as Henan, Shandong and Sichuan degraded. The number of lightning fatalities and injuries increased from 1997 to 2007 and began to decrease since 2008. While the damage reports showed an increase all along the period, only with a low value in 2008. The peak months of lightning fatalities, injuries and damages were from June to August, which was also the period of intense thunderstorm activities in China. July maxima were reached by all types of lightning reports. The number of lightning fatalities, injuries and damage reports were lowest between November to February of the following year. Rural regions accounted for 51% and 29% of all lightning fatalities and injuries. A majority of fatalities and injuries occurred when rural people were doing field work. Civil field had the largest economic losses and power industry was the second category. A significant number (79%) of lightning casualties occurred outdoors in open areas, with 37% working on farm, 14% in open fields and 9% in water area. The annual worldwide number of lightning injuries is probably five to ten times the annual number of deaths, while the injury-deaths ratio in China is about one. Future work will focus on further analysis of the high death-injury ratio in China and investigate the impact factors. In addition, comparisons of casualties and damages with ground lightning flash density data detected by the National Lightning Detection Network in China, and improvement of a better lightning reporting protocol which will include all the variables discussed above will also be included. This can help reduce the underestimation of lightning casualties and damages and develop a more concise national lightning hazard database.

ACKNOWLEDGMENT

The data used in this study was from the National Lightning Hazards Database, China Meteorological Administration.

REFERENCES

https://www.see.asso.fr/en/node/9948/landing