S.3.6 Investigations and studies on lightning air terminal shapes in relationship with the efficiency of a simple rod

13/03/2014

Auteurs :

Publication ILPS2014 International Lightning Protection Symposium

OAI : oai:www.see.asso.fr:9740:10010

DOI :

Télécharger

Le téléchargement implique l’acceptation de nos conditions d’utilisation

Abstract

Authors

Sylvain Fauveaux

S.3.2 Experimental study of the Corona Effect behavior as a function of the electric field

S.1.1 Lightning Protection at the Palace of Versailles

S.3.6 Investigations and studies on lightning air terminal shapes in relationship with the efficiency of a simple rod

Olivier Alconchel

S.3.6 Investigations and studies on lightning air terminal shapes in relationship with the efficiency of a simple rod
La SEE (Société de l’Electricité, de l’Electronique et des Technologies de l’Information et de la Communication – Association reconnue d’utilité publique, régie par la loi du 1er juillet 1901) met à la disposition de ses adhérents et des abonnés à ses publications, un ensemble de documents numériques accessibles à partir de son portail des publications. Ces documents incluent notamment les articles des revues REE, 3 EI et e-STA disponibles sous forme numérique ainsi que des publications additionnelles regroupées dans l’espace eREE. Les présentes conditions précisent les conditions de diffusion et d’utilisation de ces documents et des informations qu’ils contiennent. L’accès à ces documents, qu’il se fasse de façon gratuite ou dans le cadre d’abonnements ou d’achats faits à titre onéreux, implique l’acceptation sans restriction de ces dispositions.

Droits de propriété et de diffusion des contenus téléchargés sur le portail des publications

Les contenus rendus accessibles sur le portail des publications sont, en règle générale, protégés par le droit d’auteur. En tant que producteur, et le cas échant d’auteur, des informations rassemblées dans les contenus accessibles par ce portail, SEE se réserve l’exclusivité des droits de copie et de diffusion de tout ou partie de ces contenus.

Les contenus sont rendus accessibles à titre individuel, pour les besoins de la personne en détenant des droits d’accès en cours de validité. Aussi, la modification, la reproduction et/ou la diffusion via Internet ou le Web, intranet, extranet ou toute autre forme numérique ou imprimée, de tout ou partie des contenus téléchargés sont interdites. Une tolérance est consentie quant à la reproduction d’extraits limités de ces contenus, dans le cadre de travaux ou d’activités auxquels ils sont utiles, à la condition que l’origine de ces reproductions partielles soit mentionnée de façon lisible et sans ambigüité. Figureront en particulier : la REE (ou toute autre revue accessible sur le portail) en tant que la source, la référence de la publication et le nom de l’auteur (s’il figure dans la revue).

Ces dispositions s’appliquent également aux figures, illustrations, logos ou images.

Publication externe des contenus du portail des publications

Tout extrait des contenus du portail destiné à être utilisé dans des publicités, des communiqués de presse ou du matériel de promotion nécessite un accord préalable écrit de la SEE. Une version préliminaire du document proposé contenant ces extraits doit accompagner chacune de ces demandes. SEE se réserve le droit de refuser un tel usage externe pour quelque raison que ce
soit.

Responsabilités

La SEE apporte tout le soin possible à la préparation des informations délivrées dans les contenus produits. Cependant elle ne peut être tenue pour responsable d’aucune perte ou frais qui pourrait résulter d’imprécisions, d’inexactitudes, d’erreurs ou de possibles omissions portant sur des informations publiées, ni des résultats obtenus par l’utilisation et la pratique des informations délivrées.

Utilisation des informations recueillies lors du téléchargement de contenu

Le portail des publications est susceptible d’utiliser des « cookies » afin notamment de permettre l’utilisation de paniers d’achat et de personnaliser les parcours sur le site. SEE se réserve la possibilité d’utiliser les informations recueillies lors des téléchargements pour ses besoins internes et notamment pour l’amélioration de ses services, sans qu’elles puissent être cédées à des partenaires commerciaux. Conformément à la loi "informatique et libertés" du 6 janvier 1978, chaque utilisateur du portail dispose d’un droit d’accès et de rectification aux informations qui le concernent. Pour exercer ce droit, les utilisateurs doivent s’adresser à SEE – 17 rue de l’amiral Hamelin – 75783 Paris Cedex 16, par simple lettre ou en utilisant le formulaire de contact disponible sur son site.

Paris, le 28 avril 2013

Sponsors

Co-organizers

Metadata Datacite XML candidate:

```xml
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns="http://datacite.org/schema/kernel-4"
    <identifier identifierType="DOI">10.23723/9740/10010</identifier>
    <creators>
        <creator><creatorName>Sylvain Fauveaux</creatorName></creator>
        <creator><creatorName>Olivier Alconchel</creatorName></creator>
    </creators>
    <titles>
        <title>S.3.6 Investigations and studies on lightning air terminal shapes in relationship with the efficiency of a simple r</title>
    </titles>
    <publisher>SEE</publisher>
    <publicationYear>2014</publicationYear>
    <resourceType resourceTypeGeneral="Text">Text</resourceType>
    <dates>
        <date dateType="Created">Wed 5 Mar 2014</date>
        <date dateType="Updated">Tue 13 Jun 2017</date>
        <date dateType="Submitted">Fri 23 Aug 2019</date>
    </dates>
    <alternateIdentifiers>
        <alternateIdentifier alternateIdentifierType="bitstream">748ba91fcbc86307e1d037bfc85ec2b36303377</alternateIdentifier>
    </alternateIdentifiers>
    <formats>
        <format>application/pdf</format>
    </formats>
</resource>
```
Investigations and studies on lightning air terminal shapes in relationship with the efficiency of a simple rod S. Fauveaux R&D Department INDELEC Douai, France sfauveaux@indelec.com O. Alconchel SLICE Lille, France Abstract—For many years, studies have been carried out concerning the shape of lightning air terminals in order to determine whether a blunt or sharp rod was more efficient. Their conclusions are depending on the authors and the parameters used for the study. In order to fully understand how a lightning air terminal behaves depending on its shape, this study is based on the analysis of the lightning phenomenon, the various theories on the upward leader initiation and development under thunderstorm conditions as well as the last research works performed on subject. A specific survey has then been conducted. It deals with different rod shapes maintained at potential zero under a uniform electric field. Simulation works, tests in laboratory and in real thunderstorm conditions have been conducted on the different types of air terminals. This study completes the previous studies conducted on the rods various shapes. It highlights the close relationship between the efficiency of a single rod air terminal and the surrounding conditions, more precisely the ambient electrical field value and its evolution. It also shows some possibilities of improving the efficiency of the rod. Keywords—lightning rod, Corona effect, blunt shape, sharp shape, electric field, rod efficiency I. INTRODUCTION Many scientists looked into the behavior and the efficiency of the simple lightning rods according to their shape but often their conclusions diverge. We wanted to review on the state of art in this domain before trying to arrive at a consensus. This bibliographical work allowed us to define areas of study to go farther and complete the already realized works. These axes concerned a deepening of the physical theory, calculations and simulations but also tests in laboratory and in real thunderstorm conditions. Our results permitted coming to some clear rules about the functioning of lightning rods and the possibilities of improvement of their behavior. II. BIBLIOGRAPHIC STUDY AND RESULTS PROCESSING A. Introduction The objective of the bibliographical study was to make the state of art in every field touching lightning. Different topics and reflection areas were defined : - Understanding of the atmospheric phenomena (thunderstorms, lightning), - Synthesis of the parameters of lightning (electric fields, currents, durations, speed, ...), - Understanding of natural corona effect, - Study of the conditions of starting and development of the upward leader, - Study of the possibilities of improvement of these conditions, - Application to a lightning rod, - Study of modeling, digitizing and existing simulations, - Study and definition of the mathematical and computing tools, and of the tests in laboratory and in situ to implement, to verify and validate some principles. B. Bibliographical Study Bibliographical study was extensive and many documents were analyzed. We introduce here the points which seem to us the most important [1-11] for the understanding of treated subject. 1) Point effect and corona effect The presence of sharp objects on the ground reinforces locally the electric field, by deformation of the E-field lines, which can reach then values of some hundreds of kV/m. This is the point effect. Fig. 1. Electric field distribution If the electric field reaches locally approximately 30 kV/cm, an ionization of the air occurs owing to a phenomenon of electronic avalanche. It is the corona effect, precursory phenomenon of lightning strokes. A current becomes established during some tens of nanoseconds only. This phenomenon reproduces periodically (all the tens of milliseconds approximately). In fact, in the avalanche there is production of positive ions which are going to move in the direction of the field and to produce a positive space charge layer, which has the effect of decreasing the field in the neighborhood of the tip and of stopping ionization. Some people speak about shield effect, more important on the axis above the rod than on the sides [11]. Fig. 2. Space charge and electric field As a result of the interactions with the other molecules, there is dissipation of the space charge layer and the field at the tip raises again after some tens of milliseconds. And then the process can restart again. It is interesting to be able to have exact analytical solutions, found by mathematicians, which are going to allow studying a particular tip geometry. In the case of a simple rod, of which the equatorial plan is at potential 0, placed in a uniform field according to its north- south axis, there are exact solutions of the Laplace equation \(V = 0 \). We can so calculate the electrical field at any point of the space and notably at the top and on the axis, according to the radius of curvature of the top. Thus it is possible to define the amplification factor of the tip and its evolution. 2) Streamer development If the ambient field around the tip increases "fast enough", a new avalanche of electrons can occur in the air, ahead of the positive space charge. So new positive ions are created, which themselves are going to create a new avalanche always by moving away from the tip, and so on. Experimental data and theoretical calculations [4] give the limit of propagation of the streamer when the field becomes lower than 5 kV/cm. 3) Points accepted unanimously by the scientists In the different consulted documents, we found several points which are unanimously accepted : - With a sharpened rod, the intensity of the field is maximal but fails again to its surrounding nominal value at a shorter distance (of the top) than with a rounded off rod. - The electronic avalanche goes on as long as the field created by positive ions does not weaken significantly the local field. - Positive ions created by sharpened rods disappear faster than those created by rounded off rods. - A minimal value of the ambient field is necessary for the development of a streamer in positive upward leader. 4) Arguments against sharpened rods Some scientists give their preference to the rounded off rods rather than to the sharpened rods. According to them, a streamer going out of a rounded off electrode has a higher probability to be converted into a stable upward leader and so into a capture discharge more efficient than a discharge going out of a rod with a sharp tip. C.B. Moore [6] says that, in order to initiate the propagation of a positive streamer, the E-field has to grow quickly enough so that the limitation created by the current of positive ions has no important repercussion. In low ambient field, there are corona current pulses.
variable auxiliary polarization potential to change the amplification factor of the tip and to transform fictitiously a blunt tip into a sharp tip or vice versa. So, we vary the amplification factor. To achieve this goal, the concept which we highlight would be to modify the distribution of potential lines by introducing a rod tip sharpened to allow the evolution of the upward leader. A sphere (or half sphere) automatically onto the surrounding electric field. A possible example should be a rod tip "more or less rounded off" at first, according to dE/dt, to allow a starting to the distance with regard to the ground of the head of the downward precursor (figure 5). Fig. 5. E-field as a function of distance to ground D and return stroke current I. Thus, no ideal shape, it depends on the field and on its evolution. The shape of the "ideal" lightning conductor would be the one which could fit automatically onto the surrounding electric field. A possible example should be a rod tip "more or less rounded off" at first, according to dE/dt, to allow a starting up supported by good conditions, but then a rod tip sharpened to allow the evolution of the upward leader. A sphere (or half sphere) topped with a sharp tip would behave in this same way. However the ideal way would be to transform the shape of a rod according to electric conditions. How to achieve such a challenge? Our concept is based on the fact that the difference, from an electrical point of view, between a sharpened and a rounded off rods lies in the distribution of the E-field and potential lines near the top, consequence of the different E-field amplification factor values. Figure 6 shows the map of potential lines for two shapes of rods. Fig. 6. Potential line distribution To change the behavior of a rod, it would thus be necessary to succeed in varying the amplification factor. To achieve this goal, the concept which we highlight would be to modify the distribution of potential lines by introducing a variable auxiliary polarization potential to change the amplification factor of the tip and to transform fictitiously a blunt tip into a sharp tip or vice versa. So, we
would obtain a rod which we can call “variable-geometry rod” and which take into account real time electrical field conditions. III. STUDY ON THE SHAPE OF RODS - SIMULATION WORKS A. Introduction To verify if the suggested theory above is correct, we realized several simulations by using the finite element calculation software ATILA. From a well defined meshing and from various calculations, we were able to determine the electric characteristics to the neighborhood of a rod (potential and electric field lines, amplification zone of the field) and the field on the symmetry axis according to the distance with regard to the top of the rod. In order not to overload this present document, we do not expose here all the obtained results. Fig. 7. Rod samples used for simulation B. Works on rod at potential 0 with polarized disk 1) Study configuration We introduced a metallic disk near the top of the rod, to which we apply a DC high voltage to modify the distribution of potential lines. Fig. 8. Geometrical configuration of the study Figure 9 represents the transformation of potential lines according to the polarity of the DC potential applied to the disk. Fig. 9. Meshing and potential lines 2) Simulation results Comparison between rod + polarized disk and simple rod We defined the reduced field as the quotient of the E-field at any point of the symmetry axis by the E-field applied between the 2 metallic electrodes. The calculation of the reduced field as a function of the distance from the top of the rod shows that the presence of the disk disrupts the functioning of the rod itself (figure 10). To recover the same performance of simple rod, it is necessary to polarize the disk at about - 1 KV. Then, with a higher negative voltage the rod becomes more sharpened. On the contrary, by using a positive polarization, we undoubtedly get a blunter rod. Moving away from the tip (figure 11), we observe that process is reversed. Indeed, the field amplification, even if it is lower on a blunt rod, operates on a more important zone than with a sharp rod. Fig. 10. Reduced field as a function of the distance to the tip for various rod configurations The influence of disk position and disk diameter was also studied. The disk position (located at 3 or 4 cm from the top of the rod) has a limited influence. However, in positive polarization, it has more influence when closer to the top. The disk diameter (6 or 8 cm) has a little influence in negative polarization. In positive polarization, the more the diameter is important, the more it has influence. Fig. 11. Reduced field as a function of the distance to the tip for various rod configurations Comparison between rod + polarized disk and simple rod with complex shape By polarizing the disk at + 4 KV we manage to modify the electrical characteristics of a simple rod. Indeed, it shifts from a simple rod shape to a rod bearing electric characteristics appreciably equivalent to those exhibited by a more complex rod, for example a sphere with a small tip on the top (figure 12). Fig. 12. Reduced field as a function of the distance to the tip for various rod configurations Comparison of different cones (from 2 to 10 cm) with or without polarization of + or - 3 KV For example, we observe that a 5 cm cone with a disk polarized at + 3 KV is equivalent to a 2 cm cone (amplification factor of 400), and that a 5 cm cone with a disk polarized at - 3 KV is equivalent to a 8 cm cone (amplification factor of 550). It would be also possible to show that this auxiliary polarization is able to change a cone geometry into an ellipse geometry and vice versa. Other works were accomplished with a metallic tube instead of the disk and ended with similar results. Fig. 13. Reduced field as a function of cone sizes for two disk polarizations C. Rules ensuing from simulations results according to the obtained results, we were able to establish various rules : - By polarizing an element near the tip with a voltage of the same sign as the ambient field, “the tip gets more sharpened”. - By polarizing an element near the tip with a voltage of sign opposite to the ambient field, “the tip gets more rounded off”. - Starting from a sharpened tip, the variation range of the amplification factor of the field as a function of the polarization is larger than starting from a rounded off tip. - It seems easier to shift a tip to a more rounded off one than a more sharpened one. - The higher the ambient field, the lesser effective the effect of the polarization is. - In the interesting values of field, it is necessary to apply a polarization voltage above 1 kV to induce a significant effect. IV. STUDY ON THE SHAPE OF RODS - TESTS IN HIGH VOLTAGE LABORATORY A. Introduction To validate in laboratory the simulation and calculations results, we used the same test configuration of the figure 8, with the rods illustrated at figure 14. Fig. 14. Rods under test A test equipment was purposely designed for this study allowing us to count current pulses concerning the corona effect on each tip. B. Results 1) Simple rods We observe that the more the field increases the more the number of corona pulses increases (figure 15). We also notice that this number gets larger as the rod sharpens. Fig. 15. Corona effect activity as a function of the ambient E-field for various rods 2) Rods with polarized disk We observe on the figure 16 that we were able to change fictitiously the shape of the rod simply by modifying the polarization of the auxiliary disk. We also compared the effect of various disks placed in different positions. The disk was then replaced by a tube. Results complied with our expectations. Fig. 16. Corona effect activity as a function of the ambient E-field for various rods C. Conclusion Comparing the results obtained during simulations to those obtained in laboratory, we note that they are in good agreement. Tests in laboratory thus allowed confirming the results obtained by calculation. We were able to observe the real “transformation of the shape” of studied rods by addition of a polarized auxiliary element. V. STUDY ON THE SHAPE OF RODS - TESTS IN REAL THUNDERSTORM CONDITIONS A. Introduction Measurement campaigns were led in Florida and Brazil to validate, in situ, results described above. Tests were set up to compare the behavior of different rods subjected to an electrical thunderstorm field and to highlight the influence of a high voltage polarization applied to an element located near the top of the rod. 4 rods were subjected to tests : - Rod 1: 10 cm cone ; - Rod 2 : 5 cm cone ; - Rod 3 : 10 cm cone with polarized tube (11 cm tube placed at 3 cm from the top of the rod), or with polarized disk (disk of diameter 6 cm placed at 3 cm from the top of the rod). - Rod 4 : 5 cm cone with polarized tube or disk. B. Results Figure 17 shows the comparison between rods 1, 2 and 4 (5 cm cone with disk polarized at - 3 KV and situated at 3 cm from the top). Owing to the disk, the rod 2 gets transformed into a “more sharpened” element, practically equivalent to a 10 cm cone (rod 1). Fig. 17. Corona effect activity as a function of time for various rods under thunderstorm conditions C. Conclusion The measurements performed on the various rods are in good agreement with the results of calculations, simulations and tests in high-voltage laboratory. VI. GENERAL CONCLUSION Works described in this paper

https://www.see.asso.fr/en/node/10010/landing