A Bayesian Analysis Of Kepler-2b Using The EXONEST Algorithm

21/09/2014
Auteurs :
Publication MaxEnt 2014
OAI : oai:www.see.asso.fr:9603:11337
DOI :

Abstract

A Bayesian Analysis Of Kepler-2b Using The EXONEST Algorithm

Collection

Metrics

19
8
64.41 KB
 application/pdf
bitcache://f5a390ec134b7c7eea15289cb149a03236c787a5

License

Creative Commons None (All Rights Reserved)

Sponsors

Scientific sponsors

logo_smf_cmjn.gif
smai.png

Logistic sponsors

logo_cnrs_2.jpg
logo_supelec.png
logo-universite-paris-sud.jpg
logo_see.gif

Funding sponsors

bsu-logo.png
entropy1-01.png
<resource  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                xmlns="http://datacite.org/schema/kernel-4"
                xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4/metadata.xsd">
        <identifier identifierType="DOI">10.23723/9603/11337</identifier><creators><creator><creatorName>Kevin Knuth</creatorName></creator><creator><creatorName>Ben Placek</creatorName></creator></creators><titles>
            <title>A Bayesian Analysis Of Kepler-2b Using The EXONEST Algorithm</title></titles>
        <publisher>SEE</publisher>
        <publicationYear>2014</publicationYear>
        <resourceType resourceTypeGeneral="Text">Text</resourceType><dates>
	    <date dateType="Created">Sun 31 Aug 2014</date>
	    <date dateType="Updated">Mon 2 Oct 2017</date>
            <date dateType="Submitted">Wed 19 Sep 2018</date>
	</dates>
        <alternateIdentifiers>
	    <alternateIdentifier alternateIdentifierType="bitstream">f5a390ec134b7c7eea15289cb149a03236c787a5</alternateIdentifier>
	</alternateIdentifiers>
        <formats>
	    <format>application/pdf</format>
	</formats>
	<version>34199</version>
        <descriptions>
            <description descriptionType="Abstract"></description>
        </descriptions>
    </resource>
.

A Bayesian Analysis of Kepler-2b Using The EXONEST Algorithm Ben Placek1 and Kevin H. Knuth1,2 1 Department of Physics 2 Department of Informatics University at Albany (SUNY), Albany NY, USA bplacek@albany.edu kknuth@albany.edu Abstract The study of exoplanets (planets orbiting other stars) is revolutionizing the way we view our universe. High-precision photometric data provided by the Kepler Space Telescope (Kepler) enables not only the detection of such planets, but also their characterization. This presents a unique opportunity to apply Bayesian methods to better characterize the multitude of previously confirmed exoplanets. This pa- per focuses on applying the EXONEST algorithm to characterize the transiting short-period-hot-Jupiter, Kepler-2b. EXONEST evaluates a suite of exoplanet pho- tometric models by applying Bayesian Model Selection, which is implemented with the MultiNest algorithm. These models take into account planetary effects, such as reflected light and thermal emissions, as well as the effect of the planetary motion on the host star, such as Doppler beaming, or boosting, of light from the reflex motion of the host star, and photometric variations due to the planet-induced ellipsoidal shape of the host star. By calculating model evidences, one can determine which model best describes the observed data, thus identifying which effects dominate the planetary system. Presented are parameter estimates and model evidences for Kepler-2b. Key Words: Exoplanets, Model Selection, Kepler-2b