In “De l'esprit géométrique », the use of reason for knowledge is thought on a geometric model. In geometry, the first principles are given by the natural lights common to all men, and there is no need to define them. Other principles are clearly defined by definitions of names such that it is always possible to mentally substitute the definition for the defined [23][24][25]. These definitions of names are completely free, the only condition to be respected is univocity and invariability. Judging his solution as one of his most important contributions to science, Pascal envisioned the drafting of a small treatise entitled “Géométrie du Hasard” (Geometry of Chance). He will never write it. Inspired by this, Christian Huygens wrote the first treatise on the calculation of chances, the “*De ratiociniis in ludo aleae*” ("On calculation in games of chance", 1657). We can conclude this preamble by observing that seminal work of Blaise Pascal on Probability was inspired by *Geometry*. The objective of GSI conference is to come back to this initial idea that we can *geometrize statistics* in a rigorous way.

We can also make reference to Blaise Pascal for this GSI conference on computing geometrical statistics, because he was the inventor of computer with his “Pascaline” machine. The introduction of Pascaline marks the beginning of the development of mechanical calculus in Europe. This development, which will pass from the calculating machines to the electrical and electronic calculators of the following centuries, will culminate with the invention of the microprocessor. But it was also Charles Babbage who conceived his analytical machine from 1834 to 1837, a programmable calculating machine which was the ancestor of the computers of the 1940s, combining the inventions of Blaise Pascal and Jacquard’s machine, with instructions written on perforated cards, one of the descendants of the Pascaline, the first machine which supplied the intelligence of man.

**References:**

[1] ABOUT, P.J., BOY, M., «La correspondance de Blaise Pascal et de Pierre de Fermat», Cahiers de Fontenay, n° 32, p. 59-73.

[2] BARBARESCO, F., “Les densités de probabilité « distinguées » et l’équation d’Alexis Clairaut: regards croisés de Maurice Fréchet et de Jean-Louis Koszul », Colloque GRETSI’17, Juan-Les-Pins-September 2017

[4] BAYES, Th., «An essay towards solving a problem in the doctrine of chance», Philosophical Transactions of the Royal Society of London, 53 (1763), trad. J.-P. Cléro, Cahiers d'histoire et de philosophie des sciences, n° 18, 1988.

[5] BERNOULLI, J., Ars conjectandi (1713), die Werke von Jakob Bernoulli, 3 vols., Basel, 1969-1975.

[6] BYRNE, E., Probability and Opinion: A Study in the Medieval Pre-suppositions of Post-Medieval Theories of probability, La Haye, Martinus Nijhoff, 1968.

[7] CARDANO, De ludo aleae (ca. 1520), Opera Omnia, 10 vols., Stuttgart, 1966.

[8] CARDANO, The Book on Games of Chance, trad. S. H. Gould, New York, 1961.

[9] DASTON, L., Probability in the Enlightenment, Princeton, 1988.

[10] DAVID, F. N., Games, Gods and Gambling, A History of Probability and Statistical Ideas, London, Charles Griffin & Co, 1962.

[11] DAVIDSON, H. M., Pascal and the Arts of the Mind, Cambridge, Cambridge University Press, 1993.

[12] DE MOIVRE, A., The Doctrine of Chances, 3rd edition, London, 1756.

[13] EDWARDS, A. W. F., «Pascal and the Problem of Points», International Statistical Review, t. 51, 1983, p. 259-266.

[14] EDWARDS, A. W. F., «Pascal's Problem: The Gambler's Ruin», International Statistical Review, t. 50, 1982, p. 73-79.

[15] FRECHET M., Sur l’extension de certaines évaluations statistiques au cas de petits échantillons. Revue de l’Institut International de Statistique 1943, vol. 11, n° 3/4, pp. 182–205.

[16] GODFROY-GÉNIN A.S., Pascal la Géométrie du Hasard, Math. & Sci. hum., (38e année, n° 150, 2000, p. 7-39

[17] HACKING, I., The Emergence of Probability, Cambridge, 1975.

[18] KENDALL, M. G., PEARSON, E. S., (eds.)., Studies in the History of Statistics and Probability, 2 vols., London, 1970-1977.

[19] LEIBNIZ, G. W., «Nouveaux essais sur l'entendement humain», Sämtliche Schriften und Briefe, Berlin, 1962-1980, réed. Garnier-Flammarion, 1966.

[20] LEIBNIZ, G. W., Opuscules et fragments inédits, Couturat, ed., Paris, 1961.

[21] ORE, O., Cardano, the gambling scholar, Princeton, 1953.

[22] «Pascal et les probabilités», Cahiers Pédagogiques de philosophie et d'histoire des mathématiques, fascicule 4, IREM et CRDP de Rouen, 1993.

[23] PASCAL, B., Les Provinciales, Paris, Le Guern éd., 1987.

[24] PASCAL, B., Oeuvres complètes, J. Mesnard éd., 4 volumes publiés, 1964-1970.

[25] PASCAL, B., Pensées de Pascal, Paris, Ph. Sellier éd., 1991.

[26] PEARSON, K., The History of Statistics in the 17th and 18th Centuries, London, E.S. Pearson, ed., 1978.

[27] SCHNEIDER, I., «Why do we find the origin of a calculus of probabilities in the seventeenth century ?», Pisa Conference Proceedings, vol. 2, Dordrecht and Boston, J.Hintikka, D. Gruender, E. Agazzi eds., 1980.

[28] SCHNEIDER, I., Die Entwicklung des Wahrscheinlichkeitsbegriff in des Mathematik von Pascal bis Laplace, Munich, 1972.

[29] SHEYNIN, O., «On the early history of the law of large numbers», Studies in the History of Statistics and Probability, vol. 1, Paerson and Kendall eds., 1970.

[30] SHEYNIN, O., «On the prehistory of the theory of probability», Archives for History of Exact Sciences 12, 1974.

[31] STIGLER, S., The History of Statistics: The measurement of Uncertainety Before 1900, Cambridge (Mass.), The Belknap Press of Harvard University Press, 1986.

[32] TODHUNTER, I., A History of Mathematical Theory of Probability from the Time of Pascal to that of Laplace, Cambridge et Londres, Macmillan, 1865.