A Riemannian Approach to Blob Detection in Manifold-Valued Images

Aleksei Shestov, Mikhail Kumskov

Lomonosov Moscow State University shestov.msu@gmail.com, kumskov@gmail.com

November 7, 2017
Overview

1. Introduction

2. The Problem Statement

3. The Proposed Solution

4. The Experiments
Overview

1. Introduction

2. The Problem Statement

3. The Proposed Solution

4. The Experiments
The talk is devoted to generalization of one of the classical image processing methods, blob detection;
In our paper it is generalized for a general setting of an image being a map between manifolds;
The first generalization to such general setting;

The main points of the proposed method:
1. Consider an image graph as a submanifold
2. Define blob response functions by means of image graph curvatures;
Overview

1 Introduction

2 The Problem Statement

3 The Proposed Solution

4 The Experiments
Blob detection

- Blob detection - a widely used keypoints detector for grayscale images ($I: \mathbb{R}^2 \rightarrow \mathbb{R}$);
- Has applications in 3D face recognition, object recognition, panorama stitching, 3D scene modeling, tracking, action recognition, medical images processing, etc.;
- Aims to find "ellipse-like regions" of different sizes with similar intensity inside;
- Blobs are sought as local extremums of a blob response function.
Firstly was proposed for grayscale images $I(x) : \mathbb{R}^2 \rightarrow \mathbb{R}$;

Was generalized for $I(x) : X \rightarrow \mathbb{R}, \dim(X) = 2$;

Several approaches to generalize for $I(x) : \mathbb{R}^2 \rightarrow \mathbb{R}^m$. Are based on conversion to grayscale - don't suit for manifold-valued functions;
Blob detection: the grayscale case

A grayscale image on surface $I(x) : X \to \mathbb{R}$, $\dim(X) = 2$.

1. Calculate the scale-space $L(x, t) : X \times \mathbb{R}_+ \to \mathbb{R}$. $L(x, t)$ is the solution of $\partial_t L(x, t) = -\Delta_{LB} L(x, t)$, $L(x, 0) = I(x)$;

2. Calculate a blob response:

 the determinant blob response: $BR_{\text{det}}(x, t) = \det H_L(x, t)$ or

 the trace blob response: $BR_{\text{tr}}(x, t) = \text{tr} H_L(x, t)$,

 where H_L is the Hessian of $L(x, t)$ as a function of x with fixed t;

3. Find blobs centers and scales:

 $C = \{(x, t) = \text{arg extr}_{x,t} \tilde{BR}(x, t)\}$, where $\tilde{BR} = t BR_{\text{tr}}$ (or $t^2 BR_{\text{det}}$);

 Find the blobs radii as $s = \sqrt{2}t$.
Blob detection: a map between manifolds

General image $I(x) : X \to Y$, $H_L = \nabla dL$, $H_L \in T^*X \otimes T^*X \otimes TY$.

The straightforward generalization:

1. Scale-space can be calculated as the solution of the manifold-valued heat equation. Such PDEs solution methods are out of scope of our work.

2. Blob response calculation. The determinant blob response $BR_{det} = \det H_L$ is not defined.

3. Blobs centers calculation. We can’t find maximums or minimums of the trace blob response because it is not scalar-valued: $BR_{tr} = \text{tr} H_L \in TY$.
Ideas for the solution

How to define blob response functions for the general case?
The ideas:

1. The image graph Gr is a submanifold immersed in $X \times Y$. The grayscale and the manifold-valued cases differ only by the co-dimension of the embedding.

2. Use the mean and the scalar curvatures as blob responses:
 - Defined for all co-dimensions;
 - Close to the Hessian trace and determinant if the tangent planes to Gr and X are close.
Ideas for the solution

- How to make tangent spaces of Gr and X close?

 The affine transform:
 $Y \rightarrow \mu Y$, such that
 $G_{\mu Y} = \mu G_Y$

- If $r(X)$ (scalar curvature) $\neq 0$ then the blob response will depend on it. How to deal with it?
 Use a "relative" scalar curvature: subtract from the $r(Gr)$ the scalar curvature of the manifold formed by geodesics (obtained by exponential mapping).
The Riemannian blob response

- Gr_f - a graph of $f(x) : X \rightarrow Y$;
- H_f - the Hessian of f;
- $\mu f : X \rightarrow \mu Y := X \rightarrow Y \rightarrow \mu Y$;
- A manifold N, its submanifold M:
 - h^N_M - the mean curvature of M;
 - r^M_M the scalar curvature of M;
 - \exp^N_M - an exponential map from T_{mM} to N;

Definition 1

The scalar blob response:

$$BR_{\text{scalar}} = \lim_{\mu \rightarrow 0} \frac{1}{\mu^2} \left(r_{Gr_{\mu}L} - r_{\exp^{X \times \mu Y}_{Gr_{\mu}L}} \right),$$

the mean blob response:

$$BR_{\text{mean}} = \lim_{\mu \rightarrow 0} \frac{1}{\mu} h^{X \times \mu Y}_{Gr_{\mu}L}.$$
Connection with the Hessian

- i, j (resp. α, β) - indices for X (resp. for Y);
- $\{e_i\}$ (resp. $\{e_\alpha\}$) - an orthonormal basis of $T_X X$ (resp. $T_Y Y$);

Theorem 1

Let $H_{ij} = H_L(e_i, e_j)$, $H^\alpha(,) = \langle H_L(,), e_\alpha \rangle_Y$. Then

\[
BR_{\text{scalar}} = \sum_{i,j=1}^{n} \left(\langle H_{ij}, H_{ji} \rangle_Y - \langle H_{ii}, H_{jj} \rangle_Y \right),
\]

\[
BR_{\text{mean}} = \| (\text{tr } H^1, \ldots, \text{tr } H^m) \|_Y.
\]
Corollary 1

Let $\dim(X) = 2$. Then the scalar blob response is equal to the determinant blob response:

$$BR_{\text{scalar}} = BR_{\text{det}},$$

the mean blob response is equal to the trace blob response:

$$BR_{\text{mean}} = BR_{\text{tr}}.$$
Overview of the proof

Maps: \(f(x) : X \rightarrow Y, \tilde{f}(x) : X \rightarrow E = X \times Y, \tilde{f}(x) = (x, f(x)) \).

Bases: \(\{ e'_i = d\tilde{f}(e_i) \} \in T_{\tilde{y}}Gr_f, \{ e'_\alpha : (e'_\alpha, e'_i)_E = 0 \forall i, \forall \alpha \} \in T_{\tilde{y}}(Gr_f)^\perp, \{ e'_i, e'_\alpha \} \in T_{\tilde{y}}E \).

Lemma 1

Let \(u, v \in T_XX \). Let \(\nabla^{\tilde{f}(X)} \) be the connection on \(Gr_f \) induced by the isomorphism \(\tilde{f} \). Let \(II \) be the second fundamental form of the submanifold \(Gr_f \) of \(E \) with respect to the connection \(\nabla^{\tilde{f}(X)} \). Then
\[
H_{\tilde{f}}(u, v) = II(d\tilde{f}(u), d\tilde{f}(v)).
\]

Lemma 2

\[
II_{Gr_f}(e'_i, e'_j) = \sum_{\alpha, \beta = 1}^{m} H_{ij}^{\alpha \beta} g'_{\alpha \beta} e'_\beta.
\]
Overview

1. Introduction
2. The Problem Statement
3. The Proposed Solution
4. The Experiments
Experimental setup

An application: chemical compounds classification problem (the QSAR problem);

- The task: distinguish active and non-active compounds using their structure;
- Compound is represented by a triangulated molecular surface and several physico-chemical and geometrical properties on the surface;
- Input data element can be modeled as a 2-dimensional manifold X with a vector-valued function $f(x) : X \rightarrow \mathbb{R}^m$;
We use Riemannian blob detection for the construction of descriptor vectors. The procedure is the following:

1. Detect blobs by our method in each compound surface;
2. Form pairs of blobs on each surface;
3. Transform the blobs pairs into vectors of fixed length by using the bag of words approach;
The implementation

1. Find $\partial z_j L_i$ by the finite differences approximation, where z_j are the directions from v to its neighbour vertices.

2. Find $dL = (dL_i)$ by solving the overdetermined linear system $dL(Z) = \partial z_j L_i$, Z is a matrix which columns are vectors z_j.

3. Find $\nabla^X z_j dL$ for each j as by $\nabla^X z_j dL = P T_x X (\nabla^{\mathbb{R}^3} dL)$. $\nabla^{\mathbb{R}^3} dL$ are found by the finite differences approximation.

4. Find $\nabla^X dL = \{ H_{ij}^\alpha \}$ by solving the overdetermined linear system $\nabla^X dL(Z) = \nabla^X z_j dL$, Z is a matrix which columns are vectors z_j.

Calculate $BR_{\text{scalar}}(x, t) = \sum_{\alpha=1}^m \det H^\alpha$, $BR_{\text{mean}}(x, t) = \| \text{tr} \ H^\alpha \|$.
The results

The methods to compare:

1. Riemannian blob detection with BR_{scalar} as a blob response function;
2. A naive method of applying blob detection to each channel separately;
3. Riemannian blob detection with BR_{mean} as a blob response function. It coincides with the method, adapted to the case of 2D surface;
4. The method of adaptive neighbourhood projection. It is adapted by us to the case of 2D surface.

<table>
<thead>
<tr>
<th></th>
<th>BR_{scalar}</th>
<th>naive</th>
<th>BR_{mean}</th>
<th>Adapt. GROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>glik</td>
<td>1.0</td>
<td>0.954</td>
<td>0.975</td>
<td>1.0</td>
</tr>
<tr>
<td>pirim</td>
<td>0.99</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>sesq</td>
<td>1.0</td>
<td>0.98</td>
<td>0.976</td>
<td>1.0</td>
</tr>
<tr>
<td>bzr</td>
<td>0.992</td>
<td>0.971</td>
<td>0.975</td>
<td>0.983</td>
</tr>
<tr>
<td>er_lit</td>
<td>0.98</td>
<td>0.961</td>
<td>0.956</td>
<td>0.98</td>
</tr>
<tr>
<td>cox2</td>
<td>0.991</td>
<td>0.967</td>
<td>0.985</td>
<td>0.986</td>
</tr>
</tbody>
</table>
An example of results

Here we can see a molecular surface with BR_{scalar} on it and found centers (denoted by white color) of blobs of radii 3.
Future work

1. Generalization of our framework to the case of sections of non-trivial fiber bundles. In particular, such generalization will cover an important case of tangent vector fields;

2. Application of the developed method to more practical problems.
Thank you for the attention!