Integration of fuel cell system for aeronautical applications

Dr François Moser, Dr T. Hordé, Dr F. Boudjemaa

SAFRAN/SNECMA
Space engine division

MEA 2015 / 5th February 2015 /
Integration of FCS into aircraft

Maturated-equipment for development program (TRL6)

→ Works are still to be done to mature FC technologies for aeronautic applications
AIRCRAFT REQUIREMENTS FOR FCS CERTIFICATION

- **V-type development life cycle**

 - **S/S PDR**
 - **SS CDR**
 - **PDR**
 - **S/S CDR**

CS25 “Certification specification for large aeroplane”

ARP4754 → Guidelines For Development Of Civil Aircraft and Systems

ARP4761 → Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment

DO-178 → Software considerations in airborne systems and equipment certification

DO-254 → Design assurance guidance for airborne electronic hardware

MIL-STD-704-F → Aircraft Electrical Power Characteristics

AIR-1168 → Aerothermodynamic Systems Engineering and Design

AIR-2000 → Aerospace Fluid System Standards

AIR 6464 / EUROCAE ED-219 “Hydrogen Fuel Cells Aircraft analysis Fuel cell Safety Guidelines”

FCS certification

ED14/DO-160G → Environmental Conditions and test Procedures for Airborne Equipment

FCS component qualification

FCS qualification

S/S to be validate:
- Stack
- thermal management S/S
- Reactive alimentation S/S
- C/C
- mechanical, electrical interfaces
AIRCRAFT REQUIREMENTS FOR FCS CERTIFICATION

Design for safety: “how making a safe O₂/H₂/e- system for aircraft?”

O₂ standard known for aeronautic → CS 25
H₂ standard to be found for H₂ storage sub-system. → SAE AIR 6464
→ EN 12245 (DOT-CFFC) targeted for HP H₂(O₂) bottles (High TRL)

Examples of guidelines
- Robust to single failure + uncontrolled fire on aircraft level is extremely improbable
- HP H₂/O₂ storages shall be treated similarly regarding safety analysis
- Bottle burst to be extremely improbable by combining qualification and design

Examples of risk mitigation
- Energetic source segregation, FCS ventilation
- Fire resistance proofness (TPRD + venting line)
- Functions of control and security have to be separated
Cathode alimentation

- Mission/cycle: long mission (compressor); short mission (O₂ tank)
- Location: air cabin, atmosphere
- Life time → fuel cell stack size, reactive purity (filtering)

Operational conditions (DO-160)

- Mechanical solicitations (vibration, shocks)
 - Shock absorber: mechanical design compliance
- Thermal environment [-55°C ; +85°C]
 - Ground survival conditions
- Pressure [0.1 ; 1.088] bar abs
 - Ground conditions
 - On-board conditions

Impact on structure design, alimentation design of FCS and component (gas pressure regulator, air compressor, gasket and coolant)

Altitude

41000ft

8000ft

ground

inboard

0.75 bar

8000ft

0.75 bar

< 0.2 bar

0.6 - 1 bar
FUEL CELL SYSTEM LOCATION OPTIONS

Fuel cell system location onto an aircraft

➔ The localization of FCS on airplane would be mainly influenced by the relative proximity between FC hardware and public

➔ Different options:
 - FCS near to the load
 - FCS in tail cone
 - FCS in fairing

➔ The issues that influence the choice
 - Availability space
 - Safety
 - Tubing, wire mass & volume
 - Rejection of waste
 - FC waste heat
Fuel cell system location onto an aircraft

- Thermal management
 - Waste heat from depleted-air and cooling loop
 - Thermal power to evacuate depends on FCS electric performance (stack design) & operational condition (H2 purity, temperature, pressure)
- Design of cooling loop
 - Air cabin: limitation by ECS
 - Exterior air: external temperature variation with altitude, no control of air flow rate
 - Specific Equipment: power regulation depends on mission profile
- Specific exchanger design vs localization
- Compatibility coolant vs operational temperature
GENERAL REQUIREMENTS FOR FCS INTEGRATION

- Optimizations of FCS design and location vs application

- Equipment integration (design) into aircraft = certification specification
 - Safety assessment early in development phase
 - Operational environment
 - Integration requirements

- Automotive-based fuel cell system solutions could not be adapted to aeronautical environment

- Specific development
 - Energetic source segregation
 - H₂ fuel cell standards under evolution
 - System and component development needed
SAFRAN’s fuel cell activities
ROADMAP SAFRAN – HYDROGEN POWER UNIT

Sub-systems

- Stack FC PEM-HT 5 kW
- H2 Storage Type IV – 350 bar
- Air Compressor
- GGH2 (solid)

Systems and products

- Ground demo PEM-HT 5 kW
- H2 Storage 350 bar
- PEM-HT 2.5 kW
- PEM-HT 12 kW
- PEM-HT 50 kW
- GGH2 solids

Environmental-Navigability

- EUROCAE – aeronautical certification
- AFNOR – H2 and FC standardization
- Military directives – logistic – Airport installations

This document and the information contained are Safran property and may be subject to export control laws and regulations. They shall not be copied or disclosed to any third party without prior written approval. Unauthorized export or re-export is prohibited.

EXPORT CONTROL: NC FRANCE – NOT CONTROLLED TECHNOLOGY
COMPETENCIES @ SAFRAN ON FCS
SAFRAN DEVELOPS SPECIFIC FC EQUIPMENTS

- **HT-PEMFC stack coupling with GGH₂ (solid-based)**
 - HT-PEMFC flexible to H₂ impurities, thermal management
 - Solid GGH₂ = more safe than HP bottle, manipulation
 - HT-PEMFC + GGH₂ = compact system

- **Metallic HT-PEMFC stack (500cm²)**
 - SAFRAN’s design proprietary
 - 5kW H₂/air 160°C (2kg/kW)
 - Ageing tests under investigation
 - TRL5 (2015)
KEY MISSIONS, KEY TECHNOLOGIES, KEY TALENTS
FUEL CELL EXPERIENCES IN SAFRAN

→ **Synergy with Space activities & competences:**
- Design & Integration of complex systems (hydraulics-thermal-mechanics)
- Handling quantities of hydrogen & oxygen
- Availability of wide & secured test area (130 ha)

→ **Fuel cell experiences:**
 - System design & tests: PEMFC & SOFC (electric & MFFC)
 - Power Range: from 300 W to 70 kW
 - Reactants: (H\(_2\)/O\(_2\)) direct or (reformat H\(_2\)/Air), with gasoline fuel processing, ethanol kerosene, LPG, NG…

→ **Hydrogen production experiences (Fuel Processing and GGH2):**
 - Hydrocarbon Fuel Processor: NG, LPG and low sulfur kerosene
 - Solid Hydrogen – hydrolysis and thermolysis