MODELISATION ET COMMANDE
DE LA MACHINE ASYNCHRONE

J.P. HAUTIER et J.P. CARON (*)

INTRODUCTION GENERALE

Pendant de nombreuses décennies, la machine à courant continu a constitué
la seule source électromécanique de vitesse variable en raison de son principe même
et de la simplicité de commande qui en découle.

L'évolution technologique, notamment en matière de semi-conducteurs, permet
maintenant de construire des convertisseurs statiques de puissance élevée, capables
de délivrer des tensions (courants) d'amplitude et de fréquence réglables. Les
machines synchrones et asynchrones, plus fiables et plus robustes, peuvent donc
remplacer efficacement le moteur à courant continu dans les applications à fréquence
variable, comme la traction électrique par exemple. En revanche, avec une machine
asynchrone, la souplesse du contrôle et la qualité de conversion électromécanique,
ainsi obtenues naturellement avec une machine à courant continu, ne se retrouvent
qu'au prix d'une commande sophistiquée, reposant sur des opérateurs mathématiques
complexes.

L'enseignement de la vitesse variable par machine à courant continu oblige
maintenant à acquérir des notions d'Automatique et de Microinformatique pour une
meilleure compréhension des principes mis en œuvre dans les équipements industriels.
On assiste maintenant à un développement spectaculaire de la variation de vitesse par machines à courant alternatif, notamment asynchrone, en raison d’une part des possibilités accrues des circuits de commande et, d’autre part, de considérations économiques sur la longévité et la maintenance. L’idée étant alors de retrouver, coté utilisateur, l’équivalent du moteur à courant continu (sans les inconvénients), on s’aperçoit immédiatement que le métier d’Electrotechnicien est en pleine évolution face à de tels concepts. En effet, le génial dispositif balais-collecteur, alors situé au niveau de la puissance, est, en quelque sorte, reporté au niveau de la commande. Il en résulte donc la nécessité d’un changement profond dans les démarches intellectuelles de l’Electrotechnicien qui, de plus en plus, devient un homme de système, pluridisciplinaire et très applicatif. On ne peut que se féliciter de ces lettres de noblesse, mais le revers est au niveau de la pédagogie alors rendue plus difficile.

Que faut-il supprimer des programmes pour élargir le spectre des connaissances de l’élève qui sera amené à connaître les mécanismes subtils mis en œuvre dans un variateur asynchrone moderne ?

On aboutit ainsi à une situation quasi paradoxale dont l’une des solutions serait le reclassement des montages et systèmes, d’autant que les principes de toute machine (par exemple) reste le même, seule la technologie diffère. En revanche, un petit arsenal de mathématiques (très) appliquées est indispensable et le retour aux analogies ne pourrait être que bénéfique à l’assimilation de concepts complexes, alors mis en application dans les nouveaux variateurs de vitesse.

L’article proposé n’est pas une recette pédagogique, mais un document de travail suffisamment étouffé pour l’Enseignant confronté aux "problèmes de terrain" : les élèves. Il est évident que de nouvelles étapes sont à franchir pour bien assimiler la commande (dite vectorielle) de la machine asynchrone, notamment "l’ancienne" transformation de Park (1929) qui, en elle-même, généralise toutes les machines électriques. Ne devrait-elle pas devenir un chapitre familier de l’Electrotechnique, comme l’était le diagramme du cercle en son temps ?

Nous avons découpé la présentation en trois parties :

- 1ère PARTIE : MODELISATION EN REGIME PERMANENT à partir d’un formalisme matriciel et vectoriel utilisant les inductances propres et mutuelles, paramètres mesurables de la machine.
• 2ème PARTIE : DU THEOREME DE FERRARIS À LA TRANSFORMATION DE PARK qui débouche sur une modélisation de la machine asynchrone valable en tout régime.
• 3ème PARTIE : COMMANDE EN VITESSE où sont exposées quelques méthodes de contrôle de la machine montrant la nécessité du changement de coordonnées de Park pour la synthèse des algorithmes.

Quelques annexes pratiques viennent compléter cette présentation.

(*) J.P. HAUTIER - Professeur des Universités à l'ENSAM (C.E.R. de LILLE)
 Responsable du Groupe Commande au L.E.E.P.
 Responsable de la filière Automatisme Industriel du C.R.A. au CNAM

J.P. CARON - Professeur Agrégé HC à l'ENSAM (C.E.R. de LILLE)
 Membre du L.E.E.P.
 Responsable de la filière Electrotechnique du C.R.A. au CNAM
Ière PARTIE

Modélisation en régime permanent

I - DESCRIPTION PARAMETRIQUE

La machine asynchrone triphasée est constituée de trois enroulements identiques logés symétriquement dans les encoches du stator et d'une cage conductrice intégrée au rotor, assimilable électriquement à trois enroulements identiques parfaitement symétriques et en court-circuit.

L'étude de cette machine traduit les lois de l'électromagnétisme dans le contexte habituel d'hypothèses simplificatrices :

- entrefer constant ;
- distribution spatiale sinusoïdale des forces magnétomotrices d'entREFER ;
- circuit magnétique non saturé et à perméabilité constante ;
- pertes ferromagnétiques négligeables ;
- l'influence de l'effet de peau et de l'échauffement sur les caractéristiques n'est pas prise en compte, elle peut toutefois être montrée qualitativement [1].

Parmi les conséquences importantes des hypothèses, citons :

- l'additivité des flux ;
- la constance des inductances propres ;
- la loi de variation sinusoïdale des inductances mutuelles entre les enroulements statoriques et rotoriques en fonction de l'angle électrique de leurs axes magnétiques.

La machine est représentée à la figure 1 par ses six enroulements dans l'espace électrique ; l'angle α repère l'axe de la phase rotoriqne de référence $\bar{R}a$ par rapport à l'axe fixe de la phase statorique de référence $\bar{S}a$. Les flux sont comptés positivement selon les axes des phases ; le sens des enroulements est repéré conventionnellement par un point (.) :

un courant positif entrant par le point crée un flux positif dans l'enroulement.

Définitions et notations :

\[s, r \quad : \text{indices respectifs du stator et du rotor} ; \]
\[p \quad : \text{nombre de paires de pôles} ; \]
\[R_s, I_s \quad : \text{résistance et inductance propre d'une phase statorique} ; \]
\[R_r, I_r \quad : \text{résistance et inductance propre d'une phase rotoriqne} ; \]
\[M_s \quad : \text{coefficient de mutuelle inductance entre deux phases du stator} ; \]
\[M_r \quad : \text{coefficient de mutuelle inductance entre deux phases du rotor} ; \]
\[M_{sr} \quad : \text{Maximum de l'inductance mutuelle entre une phase du stator et une phase du rotor ; il est obtenu lorsque les axes sont alignés} ; \]
\[\alpha/p \quad : \text{angle mécanique entre $\bar{R}a$ et $\bar{S}a$} ; \]
\[\alpha \quad : \text{angle électrique entre $\bar{R}a$ et $\bar{S}a$} ; \]
v_{sa}, v_{sb}, v_{sc} : tensions d'alimentation des phases Sa, Sb, Sc ;
i_{sa}, i_{sb}, i_{sc} : courants statoriques des phases Sa, Sb, Sc ;
v_{ra}, v_{rb}, v_{rc} : tensions aux bornes des phases Ra, Rb, Rc, (Rc = 0) ;
i_{ra}, i_{rb}, i_{rc} : courants rotoriques des phases Ra, Rb, Rc ;
\omega_s : pulsation instantanée des courants statoriques ;
\omega_r : pulsation instantanée des courants rotoriques ;
\Omega : vitesse angulaire de rotation
\[\Omega = \frac{1}{p} \frac{d\phi}{dt} ; \]
\Omega_s : vitesse angulaire du champ tournant ;
\omega : vitesse angulaire électrique, \omega = p\Omega ;
C_e : couple électromagnétique.

Figure 1 - Représentation des enroulements de la machine asynchrone triphasée

Les coefficients instantanés de mutuelle inductance entre le rotor et le stator s'expriment en fonction de M_{sr} et de \alpha.

On pose :

\[M_1 = M_{sr} \cos(\alpha) \]
\[M_2 = M_{sr} \cos(\alpha - \frac{2\pi}{3}) \]
\[M_3 = M_{sr} \cos(\alpha + \frac{2\pi}{3}) \]
II - EQUATIONS GENERALES DE LA MACHINE ASYNCHRONE TRIPHASEE

Considérons l'un des six enroulements et exprimons la relation entre la tension v, qui lui est appliquée, le courant i et le flux totalisé ϕ (figure 2).

Loi de la maille : $v = r.i - e$
Loi de Faraday : $e = -\frac{d\phi}{dt}$

D'où $v = r.i + \frac{d\phi}{dt}$ (II, 1)

Figure 2 - Modèle d'une phase avec force électromotrice

On déduit pour l'ensemble des phases :

$$
\begin{bmatrix}
 v_{sa} \\
 v_{sb} \\
 v_{sc}
\end{bmatrix} =
\begin{bmatrix}
 R_s & 0 & 0 \\
 0 & R_s & 0 \\
 0 & 0 & R_s
\end{bmatrix}
\begin{bmatrix}
 i_{sa} \\
 i_{sb} \\
 i_{sc}
\end{bmatrix} +
\frac{d}{dt}
\begin{bmatrix}
 \phi_{sa} \\
 \phi_{sb} \\
 \phi_{sc}
\end{bmatrix}
$$

(II, 2)

ou $[v_s] = [R_s][i_s] + \frac{d}{dt} [\phi_s]$

$$
\begin{bmatrix}
 v_{ra} \\
 v_{rb} \\
 v_{rc}
\end{bmatrix} =
\begin{bmatrix}
 R_r & 0 & 0 \\
 0 & R_r & 0 \\
 0 & 0 & R_r
\end{bmatrix}
\begin{bmatrix}
 i_{ra} \\
 i_{rb} \\
 i_{rc}
\end{bmatrix} +
\frac{d}{dt}
\begin{bmatrix}
 \phi_{ra} \\
 \phi_{rb} \\
 \phi_{rc}
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0 \\
 0
\end{bmatrix}
$$

(II, 3)

ou $[v_r] = [R_r][i_r] + \frac{d}{dt} [\phi_r] = [0]$

Une matrice des inductances $[L(\alpha)]$ établit la relation entre les flux et les courants ; elle comporte 36 coefficients non nuls et dont la moitié dépend du temps par l'intermédiaire de α (position du rotor).
Soit :

\[
\begin{bmatrix}
\phi_{sa} \\
\phi_{sb} \\
\phi_{sc} \\
\phi_{ra} \\
\phi_{rb} \\
\phi_{rc}
\end{bmatrix} =
\begin{bmatrix}
I_s & M_s & M_s & M_1 & M_3 & M_2 \\
M_s & I_s & M_s & M_2 & M_1 & M_3 \\
M_s & M_s & I_s & M_3 & M_2 & M_1 \\
M_1 & M_2 & M_3 & I_r & M_r & M_r \\
M_3 & M_1 & M_2 & M_r & I_r & M_r \\
M_2 & M_3 & M_1 & M_r & M_r & I_r \\
\end{bmatrix}
\begin{bmatrix}
i_{sa} \\
i_{sb} \\
i_{sc} \\
i_{ra} \\
i_{rb} \\
i_{rc}
\end{bmatrix}
\]

(II, 4)

La matrice des flux réels fait apparaître quatre sous-matrices d'inductances :

\[
\begin{bmatrix}
\phi_s(a,b,c) \\
\phi_r(a,b,c)
\end{bmatrix} =
\begin{bmatrix}
[i_s] \\
[i_r]
\end{bmatrix}
\begin{bmatrix}
[L_s] & [M_{sr}] \\
[M_{rs}] & [L_r]
\end{bmatrix}
\begin{bmatrix}
i_s(a,b,c) \\
i_r(a,b,c)
\end{bmatrix}
\]

(II, 5)

avec

\[
[L_s] =
\begin{bmatrix}
I_s & M_s & M_s \\
M_s & I_s & M_s \\
M_s & M_s & I_s
\end{bmatrix}
\]

(II, 6)

\[
[L_r] =
\begin{bmatrix}
I_r & M_r & M_r \\
M_r & I_r & M_r \\
M_r & M_r & I_r
\end{bmatrix}
\]

(II, 7)

\[
[M_{sr}] = [M_{rs}]^t = M_{sr} =
\begin{bmatrix}
\cos(\alpha) & \cos(\alpha + \frac{2\pi}{3}) & \cos(\alpha - \frac{2\pi}{3}) \\
\cos(\alpha - \frac{2\pi}{3}) & \cos(\alpha) & \cos(\alpha + \frac{2\pi}{3}) \\
\cos(\alpha + \frac{2\pi}{3}) & \cos(\alpha - \frac{2\pi}{3}) & \cos(\alpha)
\end{bmatrix}
\]

(II, 8)

Finalement,

\[
[v_s] = [R_s][i_s] + \frac{d}{dt}\left([(L_s)[i_s] + [M_{sr}][i_r]]\right)
\]

(II, 9)

\[
[v_r] = [R_r][i_r] + \frac{d}{dt}\left([M_{sr}][i_s] + [L_r][i_r]\right)
\]

(II, 10)

L'expression du couple électromagnétique est donnée par la dérivée partielle de la coénergie \(W_{co} \) par rapport à \(\alpha/p \), à \(i \) constant [2].

Or, en vertu de l'hypothèse de linéarité du matériau magnétique, la coénergie \(W_{co} \) est égale à l'énergie magnétique stockée \(W_s \).
\[W_{co} = W_s = \frac{1}{2} [i]^t [L(\alpha)] [i] \] (II, 11)

Les matrices \([L_s]\) et \([L_r]\) étant invariantes par rotation, il vient :

\[C_e = p \cdot \left(\frac{\partial W_{co}}{\partial \alpha} \right)[i] = p [i_s]^t \cdot d[M_{sr}]/d\alpha [i_r] \] (II, 12)

III - REGIME PERMANENT SINUSOIDAL

III - 1. Les équations aux amplitudes complexes

La machine est alimentée par des tensions sinusoidales triphasées équilibrées, de pulsation \(\omega_s\); le régime permanent est caractérisé par une vitesse de rotation \(\Omega\) constante et des courants rotoriqes sinusoidaux, triphasés équilibrés, de pulsation \(\omega_r\).

Le glissement \(g\) relie \(\omega_r\) à \(\omega_s\):

\[g = \frac{\omega_s - \omega}{\omega_s} = \frac{\omega_r}{\omega_s} \quad ; \quad \omega_r = g \omega_s \] (III, 1)

Hypothèses :

La phase à l'origine de la tension \(v_{sa}\) est choisie égale à 0, d'où :

\[v_{sa} = \hat{V}_s \cos(\omega_s t) \]
\[v_{sb} = \hat{V}_s \cos(\omega_s t - \frac{2\pi}{3}) \] (III, 2)
\[v_{sc} = \hat{V}_s \cos(\omega_s t - \frac{4\pi}{3}) \]

Par souci de simplification, nous supposons également, qu'à \(t = 0\), les axes \(Ra\) et \(Sa\) sont en coinncidence; il vient donc :

\[M_1 = M_{sr} \cos(\omega \cdot t) \]
\[M_2 = M_{sr} \cos(\omega \cdot t - \frac{2\pi}{3}) \] (III, 3)
\[M_3 = M_{sr} \cos(\omega \cdot t - \frac{4\pi}{3}) \]

Notation

Nous définissons les courants et les flux par leur pulsation, leur amplitude et leur phase à l'origine:
\[i_{sa} = \hat{I}_s \cos(\omega_s t - \varphi_1) \]
\[i_{ra} = \hat{I}_r \cos(\omega_r t - \varphi_2) \]
\[\phi_{sa} = \hat{\Phi}_s \cos(\omega_s t - \psi_1) \]
\[\phi_{ra} = \hat{\Phi}_r \cos(\omega_r t - \psi_2) \]

Les amplitudes complexes, qui offrent l'avantage de ne pas faire apparaître le temps, seront associées aux fonctions sinusoidales selon les relations suivantes :

\[V_{sa} = V_s = \hat{V}_s \]
\[I_{sa} = I_s = \hat{I}_s e^{-j\varphi_1} \]
\[I_{ra} = I_r = \hat{I}_r e^{-j\varphi_2} \]
\[\Phi_{sa} = \Phi_s = \hat{\Phi}_s e^{-j\psi_1} \]
\[\Phi_{ra} = \Phi_r = \hat{\Phi}_r e^{-j\psi_2} \]

Nous recherchons des relations entre les amplitudes complexes précédemment définies :

flux - courants

tensions - courants

L'origine de la démonstration se trouve dans l'équation de tension des phases Sa et Ra.

Au stator

\[v_{sa} = R_s i_{sa} + \frac{d\phi_{sa}}{dt} \quad (III, 6) \]

or

\[\phi_{sa} = l_s i_{sa} + M_s i_{sb} + M_s i_{sc} + M_1 i_{ra} + M_3 i_{rb} + M_2 i_{rc} \quad (III, 7) \]

En tenant compte

- de la relation des grandeurs électriques triphasées équilibrées :
 \[i_{sa} + i_{sb} + i_{sc} = 0 \]
- des équations (III, 3),
- des expressions instantanées des courants rotoriques,

on obtient :
\[\phi_{sa} = (I_s - M_s) \cdot i_{sa} + \frac{3}{2} M_{sr} \cdot \dot{I}_r \cos(\omega_s t - \varphi_2) \]

(III, 8)

C'est une relation entre des grandeurs sinusoidales de même pulsation \(\omega_s \); une équation aux amplitudes complexes en découle :

\[\Phi_s = I_s \cdot I_s + M \cdot I_r \]

(III, 9)

\[L_s = (I_s - M_s) \] est appelée inductance cyclique statrique

\[M = \frac{3}{2} M_{sr} \] est définie comme l'inductance mutuelle cyclique entre le stator et le rotor.

L'équation (III, 6) est transposée en :

\[V_s = R_s \cdot I_s + j \omega_s \cdot \Phi_s \]

(III, 10)

Au rotor

En appliquant la même démarche de calcul qu'au stator, on obtient le résultat suivant :

\[\Phi_r = M I_s + L_r I_r \]

(III, 11) \(\omega_r \)

\[L_r = L_r - M_r \] est l'inductance cyclique rotorique

\[0 = V_r = R_r \cdot I_r + j \omega_s \Phi_r \]

(\(\omega_r = \frac{\omega_s}{\omega_r} \))

(III, 12)

Une première exploitation de ces équations consiste à situer les grandeurs électriques concernées dans le plan complexe (figure 3).

En considérant \(I_r \) comme référence, l'équation (III, 12) montre que \(\Phi_r \) est en quadrature avant sur \(I_r \) :

\[\Phi_r = \frac{1}{R_r} I_r \]

\[\varphi_2 = \frac{\pi}{2} + \psi_2 \]

Le courant \(I_s \) se déduit de \(\Phi_r \) et de \(I_r \) par la relation (III, 11) transformée :

\[I_s = \frac{\Phi_r - I_r \cdot I_r}{M} \]

Puis on construit \(\Phi_s / M \) par interprétation de l'équation (III, 9) :
\[\Phi_s / M = I_r + \frac{L_s}{M} I_s \]

Enfin, \(V_s \) est placé en ajoutant \(R_s I_s \) à \(j \omega_s \Phi_s \).

Figure 3 - Positions respectives des courants et des flux

De ce diagramme dans le plan complexe, on déduit par superposition, une représentation *espace-temps* (figure 4) dans laquelle apparaissent :

- d'une part les axes repérant le stator et le rotor : \(\bar{S}_a, \bar{R}_a \);
- d'autre part l'ensemble des vecteurs \([\bar{V}_s, \bar{I}_s, \bar{I}_r, \bar{\Phi}_s, \bar{\Phi}_r] \) tournant à la vitesse angulaire constante \(\omega_s \).

Cette dernière figure nous ramène au début de ce paragraphe :

- les valeurs instantanées de \(v_{sa}, i_{sa}, \phi_{sa} \) sont les projections respectives des vecteurs \(\bar{V}_s, \bar{I}_s, \bar{\Phi}_s \) sur l'axe \(\bar{S}_a \).
- les valeurs instantanées de \(i_{ra}, \phi_{ra} \) sont les projections respectives des vecteurs \(\bar{I}_r, \bar{\Phi}_r \) sur l'axe \(\bar{R}_a \).
Figure 4 - Diagramme espace-temps

Remarque importante :

La théorie générale, que nous venons d'exposer suppose la connaissance des valeurs des paramètres, leur acquisition est possible expérimentalement si la machine est à rotor bobiné [annexe 1].

Dans le cas, de loin le plus courant, des machines à cage, les grandeurs électriques du rotor sont inaccessibles ; nous en tiendrons compte pour la présentation des équations et des modèles associés dans le paragraphe suivant.

III - 2. Modèles et diagrammes vectoriels

III - 2.1. Modèle aux inductances couplées

Par élimination de Φ_s entre les équations (III, 9) et (III, 10), on obtient une équation reliant V_s à I_s et I_r :

$$V_s = R_s I_s + jL_s \omega_s I_s + jM \omega_s I_r$$ \hspace{1cm} (III, 13)

Opérons l'élimination de Φ_r entre (III, 11) et (III, 12) ce qui conduit à :

$$0 = \frac{R_r}{g} I_r + jL_r \omega_s I_r + jM \omega_s I_s$$ \hspace{1cm} (III, 14)

Ces équations sont traduites par le schéma équivalent par phase statorique de la figure 5 dans lequel, les inductances cycliques L_s et L_r sont couplées par la mutuelle
inductance cyclique M. Deux schémas équivalents, utilisables lorsque le rotor est à cage,
 sont établis par les transformations habituelles du quadripôle (L_s, M, L_r) :

. modèle à fuites totales au rotor ou à réactance de fuite aval ;
. modèle à fuites totales au stator, ou à réactance de fuite amont.

![Figure 5 - Modèle aux inductances couplées](image)

III - 2.2 Modèle à fuites totalisées au rotor (figure 6)

On introduit, dans l'équation, (III, 13), le courant magnétisant \(I_{sm} \) égal au courant
statorique \(I_{so} \), quand le rotor tourne à la vitesse de synchronisme, de la manière
suivante :

\[
V_s = R_s I_s + jL_s \omega_s I_{sm}
\]

(III, 15)

et on définit le courant rotorique \(I'_r \) ramené au stator par la relation :

\[
I'_r = I_{sm} - I_s
\]

(III, 16)

Il apparaît que :

\[
I'_r = \frac{M}{L_s} I_r
\]

(III, 17)

Par élimination de \(I_r \) et de \(I_s \) entre les équations (III, 14), (III, 16) et (III, 17) on
trouve une relation entre \(I_{sm} \) et \(I'_r \) :

\[
jL_s \omega_s I_{sm} = \left[\frac{R}{g} + jN \omega_s \right] [-I'_r]
\]

(III, 18)

N est définie comme l'inductance totale de fuite localisée au rotor et ramenée au
stator.

\[
N = (I_r - \frac{M^2}{L_s})(\frac{L_s}{M})^2 = \sigma L_r (\frac{L_s}{M})^2
\]
\[
\sigma = \left(1 - \frac{M^2}{L_r L_s}\right)
\]

\[
N_r = (L_r - \frac{M^2}{L_s}) = \sigma \cdot L_r
\]

\[
R = R_r \left(\frac{L_s}{M}\right)^2
\]

porte le nom de coefficient de dispersion

est l'inductance totale de fuite localisée au rotor

représente la résistance d'une phase rotorigue

ramenée au stator.

Le schéma de la figure 6 illustre les équations (III, 15) et (III, 18) ; on y met en évidence les forces électromotrices complexes

\[j\omega_s \Phi_s\] induite au stator

\[j\omega_s \left(\frac{L_s}{M}\right) \Phi_r\] appliquée aux bornes de la résistance motionnelle \(R/g\).

Figure 6 - Modèle à fuites totalisées au rotor

Figure 7 - Diagramme vectoriel du modèle à fuites totalisées au rotor
Par la construction du diagramme vectoriel de la figure 7, on retrouve évidemment les résultats de la figure 3.

L'intérêt du modèle à fuites totalisées au rotor est important pour deux raisons :

- il est identique à celui habituellement présenté dans les cours d'électrotechnique et établi en comparant le moteur asynchrone à un transformateur à champ tournant ;

- il est caractérisé par quatre paramètres R_s, L_s, N et R mesurables à l'aide de trois essais classiques, que le rotor soit bobiné ou non, [Annexe 1] :

 a) Mesurage de R_s en continu.
 b) Mesurage de L_s (et des pertes fer statoriques) par l'essai à la vitesse de synchronisme (g = 0).
 c) Mesurage de N et de R par l'essai de court-circuit à rotor bloqué (g = 1) ou par l'essai nominal (g = E_n).

III - 2.3. Modèle à fuites totalisées au stator (figure 8)

C'est le modèle qui offre la meilleure introduction au principe de la commande vectorielle par la mise en évidence d'un courant I_d créateur du flux Φ_r, analogue au courant inducteur des machines à courant continu, et d'un courant I_q au module duquel le couple est proportionnel et qui joue le rôle du courant induit.

Pour ce faire, on traite l'équation (III, 13) de la façon suivante :

\[V_s = R_s I_s + j\sigma L_s \omega_s I_s + j(1 - \sigma)L_s \omega_s I_s + jM \omega_s I_r \]

on pose :

\[I_s = I_d + I_q \]

et on écrit :

\[V_s = R_s I_s + j\sigma L_s \omega_s I_s + j(1 - \sigma)L_s \omega_s I_d \]

on en tire la relation entre I_r et I_q :

\[I_q = -\frac{L_r}{M} I_r \]

L'équation (III, 14) permet alors d'établir que :

\[j(1 - \sigma)L_s \omega_s I_d = \frac{R_r}{g} \left[\frac{M}{L_r} \right] I_q \]

On déduit la quadrature de I_d avec I_q.
L'interprétation des équations (III, 19) et (III, 21) nous conduit au schéma de la figure 8.

![Figure 8 - Modèle à fuites totalisées au stator](image)

La tension aux bornes de la résistance $\frac{R_r}{g} \left(\frac{M}{L_r}\right)^2$ est encore égale à :

$$\frac{R_r}{g} \left(\frac{M}{L_r}\right) I_r = j \frac{M}{L_r} \omega_s \Phi_r.$$

Φ_r est proportionnel à I_d :

$$\Phi_r = M I_d \quad \text{(III, 22)}$$

Dans ce modèle figurent les paramètres R_s, L_s, σ et $R_r \left(\frac{M}{L_r}\right)^2$, les deux derniers s'expriment en fonction des paramètres mesurables R, N, L_s.

En effet, on démontre que :

$$\sigma = \frac{N}{N + L_s} ; \quad R_r \left(\frac{M}{L_r}\right)^2 = R_r \left(\frac{L_s}{N + L_s}\right)^2 \quad \text{(III, 23)}$$

La figure 9 nous confirme, par une nouvelle construction du diagramme vectoriel, les résultats présentés aux figures 3 et 7.

III - 3. Les expressions du couple électromagnétique

La recherche de l'expression du couple électromagnétique peut s'effectuer par la formule générale (II, 12) ou encore par l'application du théorème de Maxwell sur le travail des forces électromagnétiques ; on leur préfère la méthode du bilan de puissance effectuée sur modèle qui présente l'avantage de la simplicité et d'une compréhension aisée.
La puissance transmise P_T à travers l'entrelacement de la machine, du stator vers le rotor, résulte de l'action de la force magnétomotrice statorique sur la force magnétomotrice rotorigue ; elles tournent toutes deux à la même vitesse angulaire :

$$\Omega_s = \frac{\omega_s}{p} ; \quad \text{alors} \quad P_T = \Omega_s C_e.$$

Par examen des modèles, la puissance transmise est aussi égale à trois fois celle reçue par la résistance motionnelle.

Notation

$I_r, I_d, I_q, \Phi_r, \Phi_s$: valeurs efficaces

$|I_r| = I_r = I_r \sqrt{2}$, etc...

Les expressions de C_e sont très variées, leur usage dépend du choix des variables flux et courants auxquelles on veut faire jouer un rôle dans le contrôle du couple.

. Modèle aux inductances couplées

$$C_e = \frac{3}{\Omega_s} \cdot \frac{R_r}{g} \cdot I_r^2$$ \hspace{1cm} (III, 24)

. Modèle à fuites totalisées au rotor

$$C_e = 3p_r \left(\frac{L_s}{M} \right)^2 \cdot \left(\frac{\alpha_0 s}{R} \right) \cdot \Phi_r^2$$ \hspace{1cm} (III, 25)
\[\tilde{C}_e = \frac{3p}{2}.(\tilde{I}_r \wedge \tilde{\Phi}_r) \]

(III, 26)

\[C_e = 3p.\omega_s.\Phi_s^2 \left(\frac{R}{g} \right) \left[\frac{(R/g)^2 + (N\omega_s)^2}{(R/g)^2 + (N\omega_s)^2} \right] \]

(III, 27)

\[\tilde{C}_e = \frac{3p}{2}.(\frac{M}{L_s}).(\tilde{I}_r \wedge \tilde{\Phi}_s) \]

(III, 28)

Modèle à fuites totalisées au stator

\[C_e = 3p.(1-\sigma).L_s.I_d.I_q \]

(III, 29)

\[\tilde{C}_e = \frac{3p}{2}.(1-\sigma).L_s.(\tilde{I}_d \wedge \tilde{I}_q) \]

(III, 30)

\[\tilde{C}_e = \frac{3p}{2}.M.(\tilde{I}_r \wedge \tilde{I}_s) \]

(III, 31)

\[\tilde{C}_e = \frac{3p}{2}.\frac{M}{L_r}.(\tilde{\Phi}_r \wedge \tilde{I}_s) \]

(III, 31)
2ème PARTIE

Du Théorème de Ferraris à la Transformation de Park

IV - FORCE MAGNETOMOTRICE D'ENTREFER, THEOREME DE FERRARIS

IV - 1. Force magnétoprotrice à répartition spatiale sinusoïdale

IV - 1.1. Définition

Le champ magnétique H dans l'entrefer constant d'une machine électrique peut être estimé par l'application du théorème d'Ampère.

Pour ce faire, considérons l'exemple simple (figure 10) d'une section diamérale, rotorigique ou statorique, formée de n spires et parcourue par le courant continu I ; le courant d'encoche vaut nI.

Figure 10 - Lignes du champ magnétique créé par deux courants d'encoche

Sur une coupe transversale de la machine, les lignes de champ entourent les encoches et leur répartition est soumise aux règles de symétrie par rapport à l'axe de l'enroulement et à la ligne neutre, trace de la section dans le plan de coupe.
Dans l'entrefer, d'épaisseur e, les lignes sont radiales, et on y néglige la variation du champ magnétique \mathbf{H}. Un point M de l'entrefer est repéré par l'angle θ défini entre le vecteur \mathbf{OM} et l'axe de l'enroulement.

Soit (c) la ligne de champ passant par M, nous lui appliquons le théorème d'Ampère :

$$\oint_{(c)} \mathbf{H}.d\mathbf{l} = nI$$ \hspace{1cm} (IV, 1)

La circulation de \mathbf{H} comporte trois termes :

- dans le matériau ferromagnétique, $\int_{\text{fer}} \mathbf{H}.d\mathbf{l}$;
- dans l'entrefer autour du point M, du rotor (R) vers le stator (S), $\int_{R,M,S} \mathbf{H}.d\mathbf{l}$;
- dans l'entrefer autour du point M', symétrique de M par rapport à la ligne neutre, du stator vers le rotor, $\int_{S,M',R} \mathbf{H}.d\mathbf{l}$.

Par définition

$$\int_{R,M,S} \mathbf{H}.d\mathbf{l} = \mathcal{E}(M) = H(M).e$$ \hspace{1cm} (IV, 2)

est la force magnétoélectrique (f.m.m) d'entrefer au point M.

Propriété de symétrie

$$\int_{R,M',S} \mathbf{H}.d\mathbf{l} = \mathcal{E}(M') = -\mathcal{E}(M)$$

Si par hypothèse, on affecte au matériau magnétique une très grande perméabilité, la f.m.m y est négligeable par rapport à $\mathcal{E}(M)$.

Cette hypothèse revient aussi à négliger tout effet de saturation qui accroît la valeur relative de la f.m.m dans le matériau.

Alors, $\mathcal{E}(M)$ s'exprime facilement en fonction du courant inducteur :

$$\mathcal{E}(M) - \mathcal{E}(M') = nI = 2\mathcal{E}(M)$$ \hspace{1cm} (IV, 4)

$$\mathcal{E}(M) = \frac{nI}{2} ; \quad \mathcal{E}(M') = -\frac{nI}{2}$$

Règles

a) vue du centre de la machine, la f.m.m située à droite d'une encoche est égale à la f.m.m située à gauche et augmentée du courant d'encoche sortant vers l'observateur.
b) Deux points d'entrefer, qui ne sont pas séparés par un courant d'encoche, ont la même force magnétomotrice.

Résultat

Le graphe $\mathcal{E}(M)$ en fonction de θ est un créneau symétrique d'amplitude $\frac{n I}{2}$ (figure 11).

![Diagramme de force magnétomotrice](image1)

Figure 11 - Répartition spatiale de la force magnétomotrice

![Diagramme de répartition sinusoidale multipolaire](image2)

Figure 12 - Approche d'une répartition sinusoidale multipolaire de la f.m.m

IV - 1.2. Répartition spatiale sinusoidale

En accroissant le nombre de sections pour former une ou plusieurs bobines identiques ; la f.m.m $\mathcal{E}(\theta)$, en M, résulte de la somme des f.m.m élémentaires développées par chacune des sections. On pourrait aussi bien, utiliser les règles a et b pour rechercher le graphe de $\mathcal{E}(\theta)$.

Une forme approchant la sinusoïde par marches d'escalier est réalisable en décalant convenablement les sections entre elles (figure 12).

Si la période spatiale est $2\pi/p$, on a réalisé l'enroulement d'une phase à p paires de pôles et à distribution sinusoidale.

Soit pn le nombre total de spires d'une phase parcourue par le courant continu I, l'expression de la f.m.m $\mathcal{E}(\theta)$ s'écrit :
\[E(\theta) = \frac{kn}{2} I \cos(p \theta) = \hat{E} \cos(p \theta) \]

(IV, 5)

k est le facteur de bobinage.

Dans l'espace électrique, \(\overrightarrow{OM} \) fait l'angle \(p \theta \) avec l'axe de la phase qui porte un vecteur \(\hat{E} \) d'amplitude \(\hat{E} \); alors la f.m.m en M s'interprète comme la mesure algébrique de la projection de \(\hat{E} \) sur \(\overrightarrow{OM} \) (figure 13).

IV - 2. Théorème de FERRARIS

Alimentons maintenant, la phase par le courant sinusoidal \(I \cos(\omega t) \), la f.m.m \(E(\theta, t) \) est la projection sur \(\overrightarrow{OM} \) du vecteur vibrant \(\hat{E} \cos(\omega t) \) porté par l'axe de la phase:

\[E(\theta) = \hat{E} \cos(\omega t) \cos(p \theta) \]

(IV, 6)

\[E(\theta) = \frac{\hat{E}}{2} [\cos(\omega t - p \theta) + \cos(\omega t + p \theta)] \]

\(E(\theta, t) \) est la somme de deux f.m.m tournantes à des vitesses opposées \(\pm \omega / p \),

\(\pm \omega \) dans l'espace électrique) et d'amplitudes égales à \(\frac{\hat{E}}{2} \).

Figure 13 - Représentation vectorielle de la f.m.m

Figure 14 - Force magnétomotrice tournante créée par des courants triphasés d'espace et de temps
Considérons ensuite "une armature triphasée d'espace" constituée de trois phases identiques et dont les axes forment un angle électrique de $\pm \frac{2\pi}{3}$; alimentons les par trois courants sinusoidaux triphasés équilibrés (figure 14)

\[i_a = \hat{I}\cos(\omega t) \quad i_b = \hat{I}\cos(\omega t - \frac{2\pi}{3}) \quad i_c = \hat{I}\cos(\omega t - \frac{4\pi}{3}) \]

Il est facile de montrer que la f.m.m $\mathcal{E}(\theta, t)$, somme des f.m.m créées par les trois courants, s'exprime par :

\[\mathcal{E}(\theta, t) = \frac{3}{2} \hat{E} \cos(\omega t - p\theta) \quad (\text{IV, 7}) \]

$\mathcal{E}(\theta, t)$ est la projection sur le vecteur \mathbf{OM} d'un vecteur \hat{E} d'amplitude $\frac{3}{2} \hat{E}$ tournant à la vitesse ω dans l'espace électrique.

Résultat important

L'axe de la f.m.m tournante \hat{E} coïncide avec l'axe d'un vecteur \hat{I} d'amplitude \hat{I} et dont la projection sur les axes des phases est égale à la valeur instantanée du courant dans la phase.

Le théorème de Ferraris énonce, d'une façon générale, qu'une armature polyphasée d'espace et parcourue par des courants sinusoidaux polyphasés équilibrés crée une f.m.m tournante unique.

On déduit, en particulier, qu'une telle f.m.m peut être élaborée soit par une armature triphasée, soit par une armature diphase (quadrature d'espace et de temps).

IV - 3. Les forces magnétomotrices de la machine asynchrone

Les trois courants statoriques et les trois courants rotoriques engendrent respectivement la f.m.m statorique $\overline{\mathcal{E}}_s$ et la f.m.m rotorique $\overline{\mathcal{E}}_r$.

Reportons nous au diagramme de la figure 4,

$\overline{\mathcal{E}}_s$ est superposé à \overline{I}_s :

\[\overline{\mathcal{E}}_s = \frac{3}{2} k_s n_s s \overline{I}_s \]

(IV, 8)

$\overline{\mathcal{E}}_r$ est superposé à \overline{I}_r :

\[\overline{\mathcal{E}}_r = \frac{3}{2} k_r n_r \overline{I}_r \]
On vérifie que \vec{E}_r et \vec{E}_s tournent à la même vitesse angulaire ω_s dans l'espace électrique.

La f.m.m d'entrefer \vec{E}, somme vectorielle de \vec{E}_r et \vec{E}_s, est caractéristique de l'état magnétique de la machine.

Pour une alimentation par les tensions du réseau de distribution, à valeur efficace et à pulsation constantes, cet état magnétique dépend assez peu de la charge mécanique ; nous admettrons donc qu'il est identique à celui du fonctionnement à glissement nul pour lequel $\vec{E}_r = 0$, alors :

$$I_s = I_{s0} = \hat{I}_{s0} \cdot e^{-j\varphi_{10}}$$

\vec{E} est donc égal à $\vec{E}_{s0} = \frac{3}{2} \frac{k_s n_s}{2} \hat{I}_{s0}$ (IV, 9)

d'où l'égalité suivante :

$$k_s n_s \hat{I}_s + k_r n_r \hat{I}_r = k_s n_s \hat{I}_{s0}$$

(IV, 10)

Soit encore :

$$k_s n_s \hat{I}_s + k_r n_r \hat{I}_r = k_s n_s \hat{I}_{s0}$$

(IV, 11)

Cette formule importante traduit le théorème d'Ampère dans la machine asynchrone.

Une nouvelle écriture de l'équation (III, 30) du couple électromagnétique est proposée :

$$C_e = \frac{8p}{3} \frac{M}{k_s k_r n_s n_r} \vec{E}_r \wedge \vec{E}_s$$

(IV, 12)

elle montre que \vec{C}_e peut être interprété comme le résultat de l'action de \vec{E}_s sur \vec{E}_r.

V - TRANSFORMATION DE PARK

V - 1. Transformation d'un système triphasé en un système diphasé équivalent

Reconsidérons la représentation de la figure 14 ; le vecteur f.m.m \vec{E} est la somme vectorielle des trois vecteurs f.m.m $\vec{E}_a, \vec{E}_b, \vec{E}_c$ portés respectivement par les trois axes $\vec{O}_a, \vec{O}_b, \vec{O}_c$. Ce même vecteur \vec{E} peut être décomposé sur deux axes en quadrature \vec{O}_d et \vec{O}_q en deux f.m.m \vec{E}_d et \vec{E}_q.

L'axe \vec{O}_d habituellement appelé axe d, est repéré par rapport à l'axe de référence \vec{O}_a à l'aide de l'angle électrique $\psi = (\vec{O}_a, \vec{O}_d)$ (figure 15).
Figure 15 - Système triphasé \((O_{abc})\) et diphasé \((O_{dq})\) élaborent une même f.m.m

Les valeurs algébriques \(E_d\) et \(E_q\) sont calculables par la projection de la somme \(\vec{E}_a + \vec{E}_b + \vec{E}_c\) respectivement sur les axes \(d\) et \(q\); on obtient la relation suivante :

\[
\begin{bmatrix}
E_d \\
E_q
\end{bmatrix} =
\begin{bmatrix}
\cos\psi & \cos\frac{\psi - \frac{2\pi}{3}}{3} & \cos\frac{\psi + \frac{2\pi}{3}}{3} \\
-\sin\psi & -\sin\frac{\psi - \frac{2\pi}{3}}{3} & -\sin\frac{\psi + \frac{2\pi}{3}}{3}
\end{bmatrix}
\begin{bmatrix}
E_a \\
E_b \\
E_c
\end{bmatrix}
\]
\(\text{(V, 1)}\)

Ce système d'équation n'étant pas inversible, il faut lui adjoindre une équation supplémentaire.

Pour cela, nous introduisons \(E_0\) proportionnel à la composante homopolaire des f.m.m quand les courants sont sinusoidaux.

\[
E_0 = K_0[E_a + E_b + E_c]
\]
\(\text{(V, 2)}\)

D'où l'équation matricielle :
\[
\begin{bmatrix}
 \mathcal{E}_d \\
 \mathcal{E}_q \\
 \mathcal{E}_0
\end{bmatrix} =
\begin{bmatrix}
 \cos \psi & \cos(\psi - \frac{2\pi}{3}) & \cos(\psi + \frac{2\pi}{3}) \\
 -\sin \psi & -\sin(\psi - \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) \\
 K_0 & K_0 & K_0
\end{bmatrix}
\begin{bmatrix}
 \mathcal{E}_a \\
 \mathcal{E}_b \\
 \mathcal{E}_c
\end{bmatrix}
\]

\(\mathcal{E}_d, \mathcal{E}_q, \mathcal{E}_0\) sont supposées engendrées respectivement par les courants \(i_d, i_q, i_0\).

Nous définissons des coefficients de proportionnalité entre f.m.m et courants :

\[
\begin{align*}
\mathcal{E}_a &= n_1 i_a ; \\
\mathcal{E}_b &= n_1 i_b ; \\
\mathcal{E}_c &= n_1 i_c ; \\
\mathcal{E}_d &= n_2 i_d ; \\
\mathcal{E}_q &= n_2 i_q ; \\
\mathcal{E}_0 &= n_2 i_0 ;
\end{align*}
\]

Par substitution, il vient :

\[
\begin{bmatrix}
 I_d \\
 I_q \\
 I_0
\end{bmatrix} =
\begin{bmatrix}
 \cos \psi & \cos(\psi - \frac{2\pi}{3}) & \cos(\psi + \frac{2\pi}{3}) \\
 -\sin \psi & -\sin(\psi - \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) \\
 K_0 & K_0 & K_0
\end{bmatrix}
\begin{bmatrix}
 I_a \\
 I_b \\
 I_c
\end{bmatrix}
\]

\((V, 4)\)

Les systèmes de courants triphasés d'espace \(i_{a,b,c}\) et diphasés d'espace \(i_{d,q}\) sont déclarés équivalents lorsqu'ils créent la même force magnétomotrice d'entrefer ; la composante d'indice (0) ne participe pas à cette création.

On remarquera qu'il n'est pas fait mention du caractère sinusoidal ou non de ces courants. Il nous reste à lever l'indétermination sur les valeurs à attribuer à \(n_1/n_2\) et à \(K_0\).

\textbf{V - 2. Transformation initiale de PARK, [3], [4]}

. Tout d'abord, \(i_0\) est identifié à la composante homopolaire lorsque les courants \(i_{a,b,c}\) sont sinusoidaux :

\[
i_0 = \frac{1}{3} (i_a + i_b + i_c) = \frac{n_1}{n_2} K_0 (i_a + i_b + i_c) \quad (V, 5)
\]

d'où \(\frac{n_1}{n_2} K_0 = \frac{1}{3}\).

. Une autre équation est nécessaire ; lorsque les courants sinusoidaux triphasés sont équilibrés, \(i_{a,b,c}\) et \(i_{d,q}\) sont les projections sur les axes des phases du même vecteur tournant \(\hat{I}\) de module \(I\).

On écrit donc :

\[i_a = \hat{I} \cos(\omega t)\]
\[i_b = \hat{I}. \cos(\omega t - \frac{2\pi}{3}) \]
\[i_c = \hat{I}. \cos(\omega t + \frac{2\pi}{3}) \]
(\text{V, 6})
\[i_d = \hat{I}. \cos(\omega t - \psi) \]
\[i_q = \hat{I}. \sin(\omega t - \psi) \]

Par la transformation 3/2, on tire :
\[i_d = \frac{n_1}{n_2} \frac{3}{2} \hat{I}. \cos(\omega t - \psi) \] (V, 7)

On déduit par identification :
\[\frac{n_1}{n_2} = \frac{2}{3} ; \quad K_0 = 1/2 \] (V, 8)

Les matrices de passage directe \([P_0]\) et inverse \([P_0]^{-1}\) sont ainsi définies :
\[[i_d, i_q, i_0]^t = [P_0] [i_a, i_b, i_c]^t \] (V, 9)
\[[i_a, i_b, i_c]^t = [P_0]^{-1} [i_d, i_q, i_0]^t \] (V, 10)

Soit :
\[
[P_0] = \frac{2}{3} \begin{bmatrix}
\cos \psi & \cos(\psi - \frac{2\pi}{3}) & \cos(\psi + \frac{2\pi}{3}) \\
-\sin \psi & -\sin(\psi - \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) \\
1/2 & 1/2 & 1/2
\end{bmatrix}
\] (V, 11)

\[
[P_0]^{-1} = \begin{bmatrix}
\cos \psi & -\sin \psi & 1 \\
\cos(\psi - \frac{2\pi}{3}) & -\sin(\psi - \frac{2\pi}{3}) & 1 \\
\cos(\psi + \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) & 1
\end{bmatrix}
\] (V, 12)

Un résultat fondamental de cette transformation appliquée au régime permanent sinusoidal est que, si le repère \(d, q\) tourne à la pulsation \(\omega\), \(i_d\) et \(i_q\) sont \textit{constants}.

La même transformation définira des flux et des tensions d’axe \(d, q, 0\).

Le choix fait de l’égalité des amplitudes ne conduit pas à l’égalité des puissances, mais présente l’intérêt de l’interprétation physique des projections d’un même vecteur dans les deux systèmes d’axe et aussi d’exprimer les équations avec les mêmes coefficients en valeurs réduites. [3], [4].
V - 3. Transformation de PARK modifiée

La nouvelle détermination des coefficients repose sur l'invariance de la puissance instantanée p dans les deux systèmes de représentation.

$$p = v_a i_a + v_b i_b + v_c i_c = v_d i_d + v_q i_q + v_0 i_0$$ \hspace{1cm} (V, 13)

Possons :

$$[x_{dq0}] =
\begin{bmatrix}
 x_d \\
 x_q \\
 x_0
\end{bmatrix} \quad \text{et} \quad [x_{abc}] =
\begin{bmatrix}
 x_a \\
 x_b \\
 x_c
\end{bmatrix}$$

avec $x = (i, v, \phi)$

Soit $[P]$ la matrice de transformation directe :

$$[x_{dq0}] = [P][x_{abc}]$$

$$p = [v_{abc}]^T[i_{abc}] = [v_{dq0}]^T[i_{dq0}]$$

$[P]$ doit satisfaire à la relation :

$$[v_{abc}]^T[i_{abc}] = [[P][v_{abc}]^T][P][i_{abc}]$$

donc $[P]^T[P] = [I]$ \hspace{1cm} (V, 14)

La matrice de transformation $[P]$ doit être orthogonale.

$$[P]^T = [P]^{-1}$$ \hspace{1cm} (V, 15)

On en déduit :

$$\frac{n_1}{n_2} = \sqrt{\frac{2}{3}} ; \quad K_0 = \frac{1}{\sqrt{2}}$$ \hspace{1cm} (V, 16)

D'où les matrices de passage directe et inverse :

$$[P] =
\begin{bmatrix}
 \cos \psi & \cos(\psi - \frac{2\pi}{3}) & \cos(\psi + \frac{2\pi}{3}) \\
 \sin \psi & -\sin(\psi - \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) \\
 \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{3}}
\end{bmatrix}$$ \hspace{1cm} (V, 17)
\[
[P]^{-1} = \frac{2}{\sqrt{3}} \begin{bmatrix}
\cos \psi & -\sin \psi & 1/\sqrt{2} \\
\cos(\psi - \frac{2\pi}{3}) & -\sin(\psi - \frac{2\pi}{3}) & 1/\sqrt{2} \\
\cos(\psi + \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) & 1/\sqrt{2}
\end{bmatrix}
\]
(V, 18)

Remarque importante

Quand le système triphasé est sinusoïdal équilibré, les composantes d'axe d et q ont une amplitude égale au produit par \(\frac{2}{\sqrt{3}}\) de celle des composantes triphasées.

Donc, les projections de I sur les axes d et q sont respectivement \(\sqrt{\frac{2}{3}} i_d\) et \(\sqrt{\frac{2}{3}} i_q\).

VI - EQUATIONS DU MOTEUR ASYNCHRONE EN REGIME TRANSITOIRE

VI - 1. Equations électriques d'un enroulement triphasé dans les axes d et q

L'équation (II, 1) est généralisée à trois phases repérées par les indices a, b, c :

\[
[v_{abc}] = [R] [i_{abc}] + \frac{d}{dt}[\phi_{abc}]
\]
(VI, 1)

\[
R = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
(VI, 2)

Appliquons la transformation linéaire \([P]\) :

\[
[P]^{-1} [v_{dq0}] = [R] [P]^{-1} [i_{dq0}] + \frac{d}{dt} [P]^{-1} [\phi_{dq0}]
\]

Soit en multipliant à gauche par \([P]\) :

\[
[v_{dq0}] = [R] [i_{dq0}] + \frac{d}{dt} [\phi_{dq0}] + [P] \frac{d}{dt} [P]^{-1} [\phi_{dq0}]
\]
(VI, 3)

On démontre que :

\[
[P] \frac{d}{dt} [P]^{-1} = \begin{bmatrix}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]
(VI, 4)
On obtient le système des équations de Park :

\[v_d = r_i_d + \frac{d\phi_d}{dt} - \frac{d\psi}{dt} \phi_q \]
\[v_q = r_i_q + \frac{d\phi_q}{dt} + \frac{d\psi}{dt} \phi_d \]
\[v_0 = r_i_0 + \frac{d\phi_0}{dt} \]
(VI, 5)

VI - 2. Application de la transformation de PARK à la machine asynchrone triphasée

VI - 2.1. Réduction de la matrice des inductances

Nous définissons deux transformations de Park, l'une \([P(\theta_s)]\) appliquée au stator, l'autre \([P(\theta_r)]\) concerne le rotor.

\(\theta_s\) est l'angle électrique \((\bar{S}_a, \bar{O}_d)\)
\(\theta_r\) est l'angle électrique \((\bar{R}_a, \bar{O}_d)\)

On remarque sur la figure 16 que \(\theta_s, \theta_r\) et \(\alpha\) sont liés par la relation :

\[\alpha = \theta_s - \theta_r \]
(VI, 7)

Par dérivation, on déduit l'équation aux pulsations instantanées :

\[\omega = \frac{d\theta_s}{dt} - \frac{d\theta_r}{dt} = p\Omega \]
(IV, 8)

Figure 16 - Repérage angulaire des systèmes d'axes

Le mode habituel d'alimentation du stator et la structure du rotor conférant la valeur nulle aux sommes des courants statoriques et des courants rotoriques, les composantes d'indice (0) sont nulles.

Dans les axes d, q la relation matricielle entre flux et courants est relativement simple ; alors que les calculs, qui permettent de l'obtenir, sont longs et fastidieux.

\[
\begin{bmatrix}
\phi_{sd} \\
\phi_{sq} \\
\phi_{rd} \\
\phi_{rq}
\end{bmatrix} =
\begin{bmatrix}
L_s & 0 & M & 0 \\
0 & L_s & 0 & M \\
M & 0 & L_r & 0 \\
0 & M & 0 & L_r
\end{bmatrix}
\begin{bmatrix}
i_{sd} \\
i_{sq} \\
i_{rd} \\
i_{rq}
\end{bmatrix}
\]
(VI, 9)

La substitution des enroulements fictifs Sd, Sq, Rd, Rq aux enroulements triphasés permet, par interprétation de leur représentation à la figure 17, une écriture rapide de l'équation (VI, 9).

Figure 17 - Représentation des enroulements dans les axes d et q

VI - 2.2. Equations des tensions

Les équations de Park statoriques et rotoriques s'écrivent :

\[
v_{sd} = R_s \cdot i_{sd} + \frac{d\phi_{sd}}{dt} - \frac{d\theta_s}{dt} \cdot \phi_{sq}
\]
\[v_{sq} = R_s \cdot i_{sq} + \frac{d\phi_{sq}}{dt} + \frac{d\theta_s}{dt} \cdot \phi_{sd} \]
\[v_{rd} = R_r \cdot i_{rd} + \frac{d\phi_{rd}}{dt} - \frac{d\theta_r}{dt} \cdot \phi_{rq} = 0 \]
\[v_{rq} = R_r \cdot i_{rq} + \frac{d\phi_{rq}}{dt} + \frac{d\theta_r}{dt} \cdot \phi_{rd} = 0 \]

On remarquera que la dernière colonne contient les termes liés au mouvement, alors que la figure 17 les occulte.

En développant les flux en fonction des courants, on obtient les équations électriques de la machine asynchrone dans le repère d'axes d, q.

\[
\begin{bmatrix}
v_{sd} \\
v_{sq} \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
R_s + L_s \cdot \frac{d}{dt} & -L_s \cdot \frac{d\theta_s}{dt} & M_s \cdot \frac{d}{dt} & -M_s \cdot \frac{d\theta_s}{dt} \\
L_s \cdot \frac{d\theta_s}{dt} & R_s + L_s \cdot \frac{d}{dt} & M_s \cdot \frac{d}{dt} & M_s \cdot \frac{d\theta_s}{dt} \\
M_s \cdot \frac{d}{dt} & -M_s \cdot \frac{d\theta_r}{dt} & R_r + L_r \cdot \frac{d}{dt} & -L_r \cdot \frac{d\theta_r}{dt} \\
M_s \cdot \frac{d\theta_r}{dt} & M_s \cdot \frac{d}{dt} & L_r \cdot \frac{d\theta_r}{dt} & R_r + L_r \cdot \frac{d}{dt}
\end{bmatrix}
\begin{bmatrix}
i_{sd} \\
i_{sq} \\
i_{rd} \\
i_{rq}
\end{bmatrix}
\]

(VI, 11)

Il existe différentes possibilités concernant le choix de l'orientation du repère d'axes d, q ; elles dépendent des objectifs de l'application :

a) axes tournant à la vitesse du rotor (\(\theta_r = 0\)) : étude des grandeurs statoriques
b) axes liés au stator (\(\theta_s = 0\)) : étude des grandeurs rotoriques
c) axes solidaires du champ tournant (\(\frac{d\theta_s}{dt} = \omega_s ; \frac{d\theta_r}{dt} = \omega_r\)) : étude de la commande.

C'est cette dernière solution qui fait correspondre des grandeurs continues aux grandeurs sinusoïdales du régime permanent ; la conception du contrôle vectoriel par orientation du flux nécessite ce choix et les modèles d'action dépendent de la position du repère par rapport aux divers axes de flux.

Enfin, en vue d'obtenir une forme analytique exploitable dans le cas du moteur à cage, nous modifions l'équation (VI, 11) pour ne faire apparaître que les paramètres mesurables :

- \(R_s\) : résistance par phase statorique
- \(L_s\) : inductance cyclique statorique
- \(\sigma\) : coefficient de dispersion
- \(T_r\) : constante de temps rotorique = \(L_r/R_r\)

C'est dans ce but que nous opérons le changement de variable suivant :

\[i_{rd} = \frac{M}{L_r} i'_{rd} \]
\[i_{rq} = \frac{M}{L_r} \cdot i_{rq} \]

(VI, 12)

Finalement :

\[
\begin{bmatrix}
v_{sd} \\
v_{sq} \\
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
R_s + L_s \frac{d}{dt} & -L_s \cdot \omega_s & (1 - \sigma) L_s \frac{d}{dt} & -(1 - \sigma) L_s \omega_s \\
L_s \cdot \omega_s & R_s + L_s \frac{d}{dt} & (1 - \sigma) L_s \omega_s & -(1 - \sigma) L_s \omega_s \\
\frac{d}{dt} & -\omega_r & \frac{1}{T_r} + \frac{d}{dt} & -\omega_r \\
\omega_r & \frac{d}{dt} & \omega_r & \frac{1}{T_r} + \frac{d}{dt}
\end{bmatrix}
\begin{bmatrix}
i_{sd} \\
i_{sq} \\
i_{rd} \\
i_{rq}
\end{bmatrix}
\]

(VI, 13)

VI - 3. Les expressions du couple électromagnétique instantané

La puissance p reçue par la machine :

\[p = v_{sd} \cdot i_{sd} + v_{sq} \cdot i_{sq} + v_{rd} \cdot i_{rd} + v_{rq} \cdot i_{rq} \]

(VI, 14)

se décompose en trois parties correspondant aux colonnes des équations (VI, 10) :

. pertes Joule :

\[R_s (i_{sd}^2 + i_{sq}^2) + R_r (i_{rd}^2 + i_{rq}^2) \]

(VI, 15)

. variation de l'énergie électromagnétique :

\[i_{sd} \cdot \frac{d \phi_{sd}}{dt} + i_{sq} \cdot \frac{d \phi_{sq}}{dt} + i_{rd} \cdot \frac{d \phi_{rd}}{dt} + i_{rq} \cdot \frac{d \phi_{rq}}{dt} \]

. puissance mécanique \(p_m \) (termes de mouvement) :

\[p_m = (\phi_{sd} \cdot i_{sq} - \phi_{sq} \cdot i_{sd}) \frac{d \theta_s}{dt} + (\phi_{rd} \cdot i_{rq} - \phi_{rq} \cdot i_{rd}) \frac{d \theta_r}{dt} \]

(VI, 17)

En tenant compte des équations (VI, 9), on peut aussi écrire :

\[p_m = (\phi_{sd} \cdot i_{sq} - \phi_{sq} \cdot i_{sd}) \frac{d (\theta_s - \theta_r)}{dt} \]

(VI, 18)

or \(p_m \) est aussi égale à \(Ce. \Omega = C \omega / p \)

d'où :

\[Ce = p \cdot \left[\phi_{sd} \cdot i_{sq} - \phi_{sq} \cdot i_{sd} \right] \]

(VI, 19)
D’autres expressions sont possibles :

\[Ce = p \left[\phi_{rq}.i_{rd} - \phi_{rd}.i_{rq} \right] \quad \bar{Ce} = \frac{3}{2} \cdot p \left[\bar{I}_r \wedge \bar{\Phi}_r \right] \quad (VI, 20) \]

\[Ce = p \cdot M \left[i_{sq} \cdot i_{rd} - i_{sd} \cdot i_{rq} \right] \quad \bar{Ce} = \frac{3}{2} \cdot p \cdot M \left[\bar{I}_r \wedge \bar{I}_s \right] \quad (VI, 21) \]

\[Ce = p \cdot \frac{M}{L_s} \left[\phi_{sq} \cdot i_{rd} - \phi_{sd} \cdot i_{rq} \right] \quad \bar{Ce} = \frac{3}{2} \cdot p \cdot \frac{M}{L_s} \left[\bar{I}_r \wedge \bar{\Phi}_s \right] \quad (VI, 22) \]

\[Ce = p \cdot \frac{M}{L_r} \left[\phi_{rd} \cdot i_{sq} - \phi_{rq} \cdot i_{sd} \right] \quad \bar{Ce} = \frac{3}{2} \cdot p \cdot \frac{M}{L_r} \left[\bar{\Phi}_r \wedge \bar{I}_s \right] \quad (VI, 23) \]

Il est remarquable que ces expressions revêtent la même écriture qu'en régime permanent (§III,3)

\[\text{si on veut } Ce = K \phi \text{ il faut annuler un composante.} \]
ANNEXE I

Détermination expérimentale des paramètres électriques des machines asynchrones

Machine d'essai :

Leroy Somer (série NA 13 250, n°36 384)
3 kW, 220 V, 12,5 A, Couplage Triangle, moteur à bagues.
1425 tr/min ; cos \(\phi = 0,85 \); \(\eta = 73 \% \); \(R_s = 1 \Omega \); \(R_r = 0,13 \Omega \).

La machine asynchrone est accouplée mécaniquement, à une machine à courant continu (dynamo-balance) qui sera utilisée,
soit en moteur dans le cas de l'entraînement à la vitesse de synchronisme et à l'hypersynchronisme,
soit en génératrice de charge.

Un alternostat triphasé est destiné au réglage des tensions appliquées au stator et au rotor.

I - MESURAGE DES INDUCTANCES ET DES MUTUELLES

I - 1. Mesurage de l'inductance d'une bobine à noyau de fer et du coefficient de mutuelle induction

Les pertes ferromagnétiques nous obligent à les prendre en compte dans la modélisation et dans l'exploitation des mesures acquises.

Habituellement, on dispose une résistance \(R_{p1} \) dans le schéma équivalent, en parallèle sur l'inductance propre \(L_1 \) de la bobine conformément à la représentation de la figure A1.

\[
\begin{align*}
&\text{Figure A1} \\
&\begin{array}{c}
R_1 & \quad \text{R}_{p1} & \quad v_1 & \quad L_1 \quad M_1 \quad L_2 \quad v_2 \\
\quad & \quad & \quad & \quad & \quad & \quad & \\
\text{R1} & : \text{résistance de la bobine primaire} \\
\text{L2} & : \text{inductance propre de la bobine secondaire} \\
\text{M1} & : \text{coefficient de mutuelle induction} \\
\text{Le secondaire est ouvert.}
\end{array}
\end{align*}
\]
Classiquement, on acquiert :
- la valeur efficace V_1 de v_1, I_1 de i_1, V_2 de v_2
- la puissance active P_1 consommée au primaire
- La résistance R_1 mesurée en continu.

La puissance réactive Q_1 se calcule par la relation de la puissance apparente :

$$Q_1 = \sqrt{(V_1 I_1)^2 - P_1^2}$$

On détermine P_{F1} les pertes ferromagnétiques, en écrivant : $P_{F1} = P_1 - R_1 I_1^2$

De P_{F1}, Q_1, I_1 on tire V_1', la valeur efficace de v_1' :

$$V_1' = \sqrt{\frac{P_{F1}^2 + Q_1^2}{I_1}}$$

En général, V_1' diffère très peu de V_1, on les confondra : $V_1' \approx V_1$

L_1 et l_1' sont calculés par les formules de la puissance réactive :

$$L_1 = \frac{V_1'^2}{Q_1 \omega} \approx \frac{V_1^2}{Q_1 \omega} \quad l_1' = \frac{V_1'}{L_1 \omega} \approx \frac{V_1}{L_1 \omega}$$

La tension V_2 étant égale à $M_1 \omega I_1'$, on tire

$$M_1 = \frac{V_2}{\omega l_1'} = \frac{V_2}{V_1'} L_1 = \frac{V_2}{V_1} L_1$$

1-2. Application au mesurage de $I_s, M_s, M_{sr}, L_r, L_s, M$

Les tensions appliquées au stator et au rotor sont limitées afin que la machine ne soit pas saturée. (Exemple : tension statorique par phase 150 V au lieu de 220 V).

1- 2.1. Une phase du stator est seule alimentée

![Diagramme](image.png)

Figure A2
Remarque :

N_c n'est pas accessible

On tourne le rotor jusqu'à ce que U_{rac} soit maximal.

Faire

a) observer et justifier les déphasages entre v_{sa}, v_{sb}, u_{rac} ;

b) démontrer que

$$\frac{V_{sb}}{V_{sa}} = \frac{|M_s|}{I_s}; \quad \frac{\text{Max}U_{rac}}{V_{sa}} = \sqrt{3} \frac{M_{sr}}{I_s}$$

Grandeurs mesurées :

I_{sa}, V_{sa}, V_{sb}, Max U_{rac}, P_{sa}, déduire I_s, M_{sr}, M_s, puis $L_r = l_s - M_s$

Exemple :

$V_{sa} = 150 \, V$; $I_{sa} = 2,6 \, A$; $P_{sa} = 46,5 \, W$; $V_{sb} = 58 \, V$; Max $U_{rac} = 57 \, V$

Résultats :

$l_s = 0,185 \, H$; $M_{sr} = 0,040 \, H$; $M_s = -0,072 \, H$, d'où $L_r = l_s - M_s = 0,257 \, H$

I - 2.2. Le rotor est alimenté entre deux phases

On applique $U_{rac} = \text{Max} U_{rac}$ (paragraphe précédent)
La position du rotor doit être celle où la valeur efficace V_{sa} est maximale.

Faire démontrer que
\[u_{rbc} = \frac{u_{rac}}{2} \]

\[L_r = \frac{U_{rac}^2}{2\omega \sqrt{(U_{rac}I_{rac})^2 - P_{rac}^2}} \]

\[M_{sr} = 2L_r \frac{V_{sa}}{3} \frac{V_{sa}}{U_{rac}} \]

Grandeur mesurées :

I_{rac}, P_{rac}, U_{rac}, U_{rbc}, V_{sa}

Exemple :

$I_{rac} = 6\,A$; $P_{rac} = 46.8\,W$; $U_{rac} = 57\,V$; $V_{sa} = 128\,V$; $U_{rbc} = 28.5\,V$

Résultats :

$L_r = 0.015\,H$; $M_{sr} = 0.0395\,H$

l_r et M_r ne sont pas accessibles car le point N_c n'est pas sorti.

I - 3. Essai de transformateur à champ tournant, à vide

Hypothèses :

1) les enroulements rotoriqnes ne sont pas en court-circuit.
2) l'alternostat triphasé alimente les trois phases statoriques ($V_s = 150$ volts)

I - 3.1. Rotor à l'arrêt

L'essai conduit à la détermination
- de l'inductance cyclique L_s
- de la mutuelle M
- des pertes fer statoriques et rotoriqnes à la fréquence 50 Hz et pour $V_s = 150$ volts.

On mesure :
- valeur efficace du courant par phase I_s
- valeur efficace de la tension par phase V_s
- valeur efficace de la tension de ligne rotoriqne U_{rac}
- puissance active absorbée au stator P.

Exemple :

\[V_s = 150 \text{ V} ; I_s = 1,96 \text{ A} ; U_{rac} = 67 \text{ V} ; P = 90 \text{ W} ; \omega_s = 100 \pi \text{ rad/s} \]

On déduit :
- la somme des pertes fer : \(P_{fs} = P - 3R_s I_s^2 = 78,5 \text{ W} \)
- les grandeurs électriques par phase :
 \[V_s = 150 \text{ V} ; I_s = 1,96 \text{ A} ; P_s = 30 \text{ W} ; Q_s = 293 \text{ var} ; V_r = \frac{U_{rac}}{\sqrt{3}} = 38,7 \text{ V} \]
 \[L_s = \frac{V_s^2}{Q_s \omega_s} = 0,245 \text{ H} \]
 \[M = L_s \frac{V_r}{V_s} = 0,063 \text{ H} \]
 d'où \(M_{sr} = 2M/3 ; M_{sr} = 0,042 \text{ H} \)

I - 3.2. Rotor entraîné à la vitesse du synchronisme

On observe que \(U_{rac} = 0 \)
On procède aux mêmes mesures que précédemment

Exemple :

\[V_s = 150 \text{ V} ; I_s = 1,90 \text{ A} ; P = 40 \text{ W} \]

On déduit
- les pertes fer statiques, \(P_{fs} = P - 3R_s I_s^2 = 29 \text{ W} \)
- l'inductance cyclique statique, \(L_s = \frac{V_s^2}{Q_s \omega_s} = 0,251 \text{ H} \)

II - MODELE A INDUCTANCE DE FUITE AVAL

Le modèle par phase tient compte des pertes fer

\[\text{Figure A4} \]

II - 1. Dans l'essai à vide, à la vitesse de synchronisme, le modèle est réduit aux trois éléments \((R_s, R_p, L_s)\).

L'approximation qui consiste à confondre \(V''_s \) et \(V_s \), est validée.

Le calcul de \(V''_s \) s'effectue par exploitation du théorème de Boucherot
En posant :

\[P_{s0} = \frac{P}{3} = 13.3 \text{ W} \]
\[Q_{s0} = \sqrt{(V_s \cdot I_s)^2 - P_{s0}^2} = 284.7 \text{ var} \]

On obtient \(V'_s \) par l'expression calculée de la puissance apparente attribuée au dipôle (\(R_p/I_s \))

\[V'_s \cdot I_s = \sqrt{Q_{s0}^2 + (P_{s0} - R_s I_s^2)^2} \]

\[V'_s = 149.93 \text{ V} ! \]

On en tire la valeur de \(R_p \):

\[P_{s0} - R_s I_s^2 = V'_s^2/R_p ; R_p = 2312 \text{ } \Omega \]

II - 2. Identification des paramètres rotoriques ramenés au stator : \(R, N \)

Les résultats de mesure dépendent :

. du choix de la vitesse, nulle (rotor bloqué), ou égale à la vitesse nominale (\(g = g_n \)), à cause de l'effet de peau ;
. de la précision de l'acquisition du glissement quand il est faible ;
. de la valeur calculée de la puissance reactive attribuée aux fuites magnétiques.

Principe de calcul de \(R \) et de \(N \)

Il repose à nouveau sur l'interprétation du théorème de Boucherot.

A partir des mesurages en ligne, on déduit, *par phase*, les valeurs de \(V_s, I_s, P_s, Q_s \).

La démarche doit aboutir à la connaissance :

. de la valeur efficace \(I'_r \)
. des puissances active \(P_2 \) et réactive \(Q_2 \) respectivement fournies à \(R/g \)
 et \(N \omega_s \).

On déduit :

\[R = g \frac{P_2}{I_r^2} ; \quad N = \frac{Q_2}{\omega_s I_r^2} \]

Pour atteindre cet objectif, la tension intermédiaire \(V'_s \) est d'abord calculée.

\[V'_s = \frac{1}{I_s} \sqrt{(P_s - R_s I_s^2)^2 + Q_s^2} \]

puis on déduit \(P_2 \) et \(Q_2 \) :
\[P_2 = P_s - R_s I_s^2 - \frac{V_s^2}{R_p} \quad ; \quad Q_2 = Q_s - \frac{V_s^2}{L_s \omega_s} \]

\(I_r \) nous est donné par :

\[I_r' = \frac{1}{V_s'} \sqrt{P_2' + Q_2'} \]

Exemple :

Mesures :

\(V_s = 150 \text{ V} ; I_s = \frac{10}{\sqrt{3}} \text{ A} = 5,77 \text{ A} ; P_s = 760 \text{ W} ; Q_s = 414 \text{ var} ; g = 7,4 \% ; \)
\(R_s = 1 \Omega ; R_p = 2 312 \Omega ; L_s \omega_s = 79 \Omega. \)

Résultats :

\(V_s' = 145 \text{ V} ; P_2' = 736 \text{ W} ; Q_2' = 148 \text{ var} ; I_r' = 5,18 \text{ A} ; R = 2,03 \Omega ; N = 0,0176 \text{ H}. \)

Vérification théorique :

La théorie linéaire a montré que \(R = R_r \cdot \left(\frac{L_s}{M} \right)^2 \).

En attribuant à \(L_s \) et \(M \) une valeur moyenne issue des premières mesures (§1)
\(L_s = 0,250 \text{ H} ; M = 0,06 \text{ H} \)

On trouve : \(R = 2,18 \Omega \)

L'écart relatif constaté vaut 7 \%, c'est un assez bon résultat.

Par contre, il est impossible de vérifier la formule de \(N = (L_r - \frac{M^2}{L_s}) \cdot \left(\frac{L_s}{M} \right)^2 \) car les valeurs trouvées de \(L_r \) et \(M^2/L_s \) sont trop proches l'une de l'autre ; nous trouvons même une valeur négative.

Il sera donc admis que la valeur de \(N \) mesurée entrera dans le calcul du coefficient de dispersion et de constante de temps rotorique.
\[\sigma = \frac{N}{N + L_s} = 6.58 \times 10^{-2} \quad ; \quad T_r = \frac{L_s + N}{R} = 139 \text{ms} \]

III - MESURAGE DE LA CONSTANTE DE TEMPS ROTORIQUE \(T_r \) PAR UNE METHODE DYNAMIQUE

Le rotor, enroulements en court-circuit, est entraîné à la vitesse du synchronisme par le moteur à courant continu. On couple le stator au réseau, en respectant un ordre correct de succession des phases, puis on accroît la vitesse de rotation pour que le courant statorique atteigne la valeur nominale ; la machine asynchrone fonctionne alors en génératrice hypersynchrone. On coupe l'alimentation statorique et on procède à l'enregistrement de la tension statorique par phase ; elle évolue selon une sinusoïde amortie exponentiellement avec la constante de temps \(T_r \) que l'on calcule à partir des deux points sur l'une des enveloppes exponentielles (figure A5).

![Figure A5](image_url)

Démonstration :

expression de \(v_{sa}(t) \)

Nous lisons les axes \(d, q \) au rotor :
\[\theta_r = 0 ; \ \omega_r = 0 \]

Le rotor est entraîné à vitesse constante \(\omega \), donc : \(\omega_s = \omega \);
possons \(\theta_s = \omega_s t \)
A l'ouverture de la liaison avec le réseau, les courants statoriques sont nuls, donc :

\[i_{sd} = 0; i_{sq} = 0 \]

De l'équation matricielle (VI-13), on déduit :

\[
0 = \frac{i'_{rd}}{T_r} + \frac{di'_{rd}}{dt} \Rightarrow i'_{rd} = I'_{rd}(0)e^{-\frac{t}{T_r}}
\]

\[
0 = \frac{i'_{rq}}{T_r} + \frac{di'_{rq}}{dt} \Rightarrow i'_{rq} = I'_{rq}(0)e^{-\frac{t}{T_r}}
\]

\[
v_{sd} = (1 - \sigma)L_s \frac{di'_{rd}}{dt} - (1 - \sigma)L_s \cdot \omega_s \cdot i'_{rq}
\]

\[
v_{sq} = (1 - \sigma)L_s \omega_s \cdot i'_{rd} + (1 - \sigma)L_s \cdot \frac{di'_{rq}}{dt}
\]

soit encore :

\[
v_{sd} = V_{sd}(0)e^{-\frac{t}{T_r}}
\]

\[
v_{sq} = V_{sq}(0)e^{-\frac{t}{T_r}}
\]

Par la transformation inverse de PARK, on trouve \(v_{sa}(t) \) :

\[
v_{sa} = \sqrt{\frac{2}{3}} \left[v_{sd} \cdot \cos(\omega_s \cdot t) - v_{sq} \cdot \sin(\omega_s \cdot t) \right]
\]

\[
v_{sa} = A \cdot \cos(\omega_s \cdot t + \xi) e^{-\frac{t}{T_r}}
\]

A la figure A5, le rapport de deux sommets distants de 200 ms vaut 0,275 ; la valeur de \(T_r \) se calcule par la relation

\[T_r = \frac{-0,2}{\ln 0,275} = 155 \text{ms} \]

L'écart relatif avec la valeur calculée par mesure à de \(R_s, N, L_s \) est de 11 \%.

40