Complexification of Information Geometry in view of quantum estimation theory

by

Hiroshi Nagaoka
Introduction

As H. Shima pointed out in his book:

- M: manifold with affine structure (flat connection) (θ^i)

\[\downarrow \]

TM: tangent bundle with a complex structure

As H. Shima pointed out in his book:
Introduction

As H. Shima pointed out in his book:

- \(M \) : manifold with affine structure (flat connection) \((\theta^i)\)

\[
\downarrow
\]

\(TM \) : tangent bundle with a complex structure

and

- \(M \) : manifold with a Hessian structure \(((\theta^i), g, \psi)\)

\[
g_{ij}(\theta) = \partial_i \partial_j \psi(\theta) \quad (\partial = \frac{\partial}{\partial \theta^i})
\]

\[
\downarrow \quad \text{(dually flat structure)}
\]

\(TM \) : tangent bundle with a Kähler structure

with a Kähler potential \(\psi(\theta) \)
A similar situation will appear in the context of quantum estimation theory, where
A similar situation will appear in the context of quantum estimation theory, where

\[M \] will be replaced with an (classical and quantum) exponential family

and

\[TM \] will be replaced with the complex projective space (the set of quantum pure states)
Classical Exponential Families

Let

- \mathcal{X}: a finite set,
- $\mathcal{P} = \mathcal{P}(\mathcal{X}) := \{p | p : \mathcal{X} \to (0, 1), \sum_{x \in \mathcal{X}} p(x) = 1\}$,
Classical Exponential Families

Let

- \(\mathcal{X} \): a finite set,
- \(\mathcal{P} = \mathcal{P}(\mathcal{X}) := \{ p \mid p : \mathcal{X} \to (0, 1), \sum_{x \in \mathcal{X}} p(x) = 1 \} \),
- \(M = \{ p_\theta \mid \theta \in \Theta(\subset \mathbb{R}^n) \} (\subset \mathcal{P}) \), where

\[
p_\theta(x) = p_0(x) \exp \left[\sum_{j=1}^{n} \theta^i f_i(x) - \psi(\theta) \right],
\]

\[
\psi(\theta) := \log \sum_{x \in \mathcal{X}} p_0(x) \exp \left[\sum_{j=1}^{n} \theta^i f_i(x) \right].
\]
Classical Exponential Families

Let

- \mathcal{X}: a finite set,
- $\mathcal{P} = \mathcal{P}(\mathcal{X}) := \{p | p : \mathcal{X} \to (0, 1), \sum_{x \in \mathcal{X}} p(x) = 1\}$,
- $M = \{p_\theta | \theta \in \Theta(\subset \mathbb{R}^n) \} (\subset \mathcal{P})$, where

\[
p_\theta(x) = p_0(x) \exp\left[\sum_{j=1}^{n} \theta^i f_i(x) - \psi(\theta)\right],
\]

\[
\psi(\theta) := \log \sum_{x \in \mathcal{X}} p_0(x) \exp\left[\sum_{j=1}^{n} \theta^i f_i(x)\right].
\]

We assume

\{1, f_1, \ldots, f_n\} are linearly independent,

which implies

$\theta \mapsto p_\theta$ is injective.
Geometrical Structure of Exponential Family

• Fisher information metric:

\[g_{ij} = E_\theta[\partial_i \log p_\theta \partial_j \log p_\theta] = \partial_i \partial_j \psi(\theta) \]

(\Rightarrow \text{ Cramér-Rao inequality : } V(\text{estimator}) \geq [g_{ij}]^{-1})

• e-, m-connections:

<table>
<thead>
<tr>
<th>affine coordinates</th>
<th>flat connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta^i)</td>
<td>(\nabla^{(e)})</td>
</tr>
<tr>
<td>(\eta_i := E_\theta[f_i])</td>
<td>(\nabla^{(m)})</td>
</tr>
</tbody>
</table>
Geometrical Structure of Exponential Family

• Fisher information metric:

\[g_{ij} = E_{\theta}[\partial_i \log p_\theta \partial_j \log p_\theta] = \partial_i \partial_j \psi(\theta) \]

(\Rightarrow \text{ Cramér-Rao inequality : } V(\text{estimator}) \geq [g_{ij}]^{-1})

• e-, m-connections:

affine coordinates \quad \text{flat connection}
\begin{align*}
\theta^i & \quad \rightarrow \quad \nabla^{(e)} \\
\eta_i := E_{\theta}[f_i] & \quad \rightarrow \quad \nabla^{(m)}
\end{align*}

• Duality: \quad (Nagaoka & Amari, 1982)

\[X g(Y, Z) = g(\nabla_X^{(e)} Y, Z) + g(Y, \nabla_X^{(m)} Z) \]

\Rightarrow (M, g, \nabla^{(e)}, \nabla^{(m)}) \text{ is dually flat}
• $\hat{\eta} := (f_1, \ldots, f_n)$ is an estimator achieving the Cramér-Rao bound (an efficient estimator).
\[
\hat{\eta} := (f_1, \ldots, f_n) \text{ is an estimator achieving the Cramér-Rao bound (an efficient estimator).}
\]

\[
\mathcal{P} \text{ itself is an exponential family.}
\]
Quantum State Space

Let $\mathcal{H} \cong \mathbb{C}^d$ be a Hilbert space with an inner product $\langle \cdot | \cdot \rangle$, and define

$$\mathcal{L}(\mathcal{H}) := \{ A | A : \mathcal{H} \xrightarrow{\text{linear}} \mathcal{H} \} = \{\text{linear operators}\},$$

$$\mathcal{L}_h(\mathcal{H}) := \{ A \in \mathcal{L}(\mathcal{H}) | A = A^* \} = \{\text{hermitian operators}\},$$

where $S_r := \{ \rho | \rho \in \mathcal{L}_h(\mathcal{H}) | \rho \geq 0, \text{Tr}[\rho] = 1 \}$.
Let $\mathcal{H} \cong \mathbb{C}^d$ be a Hilbert space with an inner product $\langle \cdot | \cdot \rangle$, and define

$$\mathcal{L}(\mathcal{H}) := \{ A | A : \mathcal{H} \xrightarrow{\text{linear}} \mathcal{H} \} = \{ \text{linear operators} \},$$

$$\mathcal{L}_h(\mathcal{H}) := \{ A \in \mathcal{L}(\mathcal{H}) | A = A^* \} = \{ \text{hermitian operators} \},$$

$$\tilde{S} := \{ \rho | \rho \in \mathcal{L}_h(\mathcal{H}) | \rho \geq 0, \text{Tr}[\rho] = 1 \} = \{ \text{quantum states} \} = \bigcup_{r=1}^{n} S_r,$$

where

$$S_r := \{ \rho \in \mathcal{S} | \text{rank } \rho = r \}.$$
Quantum State Space

Let $\mathcal{H} \cong \mathbb{C}^d$ be a Hilbert space with an inner product $\langle \cdot | \cdot \rangle$, and define

$$
\mathcal{L}(\mathcal{H}) := \{ A \mid A : \mathcal{H} \xrightarrow{\text{linear}} \mathcal{H} \} = \{ \text{linear operators} \},
$$

$$
\mathcal{L}_h(\mathcal{H}) := \{ A \in \mathcal{L}(\mathcal{H}) \mid A = A^* \} = \{ \text{hermitian operators} \},
$$

$$
\bar{\mathcal{S}} := \{ \rho \mid \rho \in \mathcal{L}_h(\mathcal{H}) \mid \rho \geq 0, \text{Tr}[\rho] = 1 \} = \{ \text{quantum states} \}
$$

$$
= \bigcup_{r=1}^{n} \mathcal{S}_r,
$$

where

$$
\mathcal{S}_r := \{ \rho \in \mathcal{S} \mid \text{rank} \ \rho = r \}.
$$

- We mainly treat \mathcal{S}_1 and \mathcal{S}_d in the sequel.
SLD Fisher Metric

Given a manifold \(M = \{ \rho_\theta | \theta = (\theta^i) \in \Theta \} \subset \bar{S} \), let
SLD Fisher Metric

Given a manifold $M = \{\rho_\theta \mid \theta = (\theta^i) \in \Theta\} \subset \bar{S}$, let

- $L_{\theta,i} \in \mathcal{L}_h(\mathcal{H})$ s.t. $\frac{\partial}{\partial \theta^i} \rho_\theta = \frac{1}{2} \left(\rho_\theta L_{\theta,i} + L_{\theta,i} \rho_\theta \right)$

: Symmetric Logarithmic Derivatives, or SLDs of M
Given a manifold \(M = \{\rho_\theta | \theta = (\theta^i) \in \Theta \} \subset \bar{S} \), let

- \(L_{\theta,i} \in \mathcal{L}_h(\mathcal{H}) \) s.t. \(\frac{\partial}{\partial \theta^i} \rho_\theta = \frac{1}{2} (\rho_\theta L_{\theta,i} + L_{\theta,i} \rho_\theta) \):

 Symmetric Logarithmic Derivatives, or SLDs of \(M \)

- \(g_{ij} := \text{Re} \ Tr [\rho_\theta L_{\theta,i} L_{\theta,j}] \).

\[g = [g_{ij}] \text{ defines a Riemannian metric on } M. \]
SLD Fisher Metric (cont.)

- The metric g is a quantum version of the classical Fisher metric, and is called the SLD metric.
SLD Fisher Metric (cont.)

- The metric g is a quantum version of the classical Fisher metric, and is called the SLD metric.

- A quantum version of Cramér-Rao inequality: $V(\text{estimator}) \geq [g_{ij}]^{-1}$. (Helstrom, 1967)
SLD Fisher Metric (cont.)

- The metric g is a quantum version of the classical Fisher metric, and is called the SLD metric.

- A quantum version of Cramér-Rao inequality: $V(\text{estimator}) \geq [g_{i,j}]^{-1}$. (Helstrom, 1967)

- The minimum monotone metric. (Petz, 1996)
SLD Fisher Metric (cont.)

- The metric g is a quantum version of the classical Fisher metric, and is called the SLD metric.

- A quantum version of Cramér-Rao inequality: $V(\text{estimator}) \geq [g_{ij}]^{-1}$. (Helstrom, 1967)

- The minimum monotone metric. (Petz, 1996)

- Every S_r becomes a Riemannian space with the SLD metric.
r=d: faithful states

• $S_d = \{ \rho \in \bar{S} \mid \rho > 0 \} = \{ \text{faithful states} \}$.
$r=d$: faithful states

- $S_d = \{\rho \in \bar{S} \mid \rho > 0\} = \{\text{faithful states}\}$.

- Since S_d is an open subset in the affine space $\{A \mid A = A^\ast$ and $\text{Tr}A = 1\}$, the m-connection $\nabla^{(m)}$ on S_d is defined as the natural flat connection.

$R^{(e)} = 0$ (curvature), $T^{(e)} \neq 0$ (torsion), so $(S_d, g, \nabla^{(e)}, \nabla^{(m)})$ is not dually flat.
r=d: faithful states

- $S_d = \{ \rho \in \bar{S} \mid \rho > 0 \} = \{ \text{faithful states} \}$.

- Since S_d is an open subset in the affine space $\{ A \mid A = A^* \text{ and } \text{Tr}A = 1 \}$, the m-connection $\nabla^{(m)}$ on S_d is defined as the natural flat connection.

- The e-connection $\nabla^{(e)}$ is defined as the dual of $\nabla^{(m)}$ w.r.t. g:

$$X g(Y, Z) = g(\nabla^{(e)}_X Y, Z) + g(Y, \nabla^{(m)}_X Z)$$
\[r=\mathbb{d} : \text{faithful states} \]

- \(S_d = \{ \rho \in \bar{S} \mid \rho > 0 \} = \{ \text{faithful states} \} \).
- Since \(S_d \) is an open subset in the affine space \(\{ A \mid A = A^* \text{ and } \text{Tr}A = 1 \} \), the m-connection \(\nabla^{(m)} \) on \(S_d \) is defined as the natural flat connection.
- The e-connection \(\nabla^{(e)} \) is defined as the dual of \(\nabla^{(m)} \) w.r.t. \(g \):
 \[
 Xg(Y, Z) = g(\nabla^{(e)}_XY, Z) + g(Y, \nabla^{(m)}_XZ)
 \]
- \(R^{(e)} = 0 \) (curvature), \(T^{(e)} \neq 0 \) (torsion), so \((S_d, g, \nabla^{(e)}, \nabla^{(m)}) \) is not dually flat.
$r=1$: pure states

- $S_1 = \{ |\xi\rangle\langle\xi| \mid \xi \in \mathcal{H}, \|\xi\| = 1 \} = \{ \text{pure states} \}$.
$r=1$: pure states

- $S_1 = \{ |\xi\rangle\langle\xi| \mid \xi \in \mathcal{H}, \|\xi\| = 1 \} = \{\text{pure states}\}$.

- $S_1 \cong \mathbb{P}(\mathcal{H}) := (\mathcal{H} \setminus \{0\})/\sim$ (complex projective space),
 where $\xi_1 \sim \xi_2 \iff \exists c \in \mathbb{C}, \xi_1 = c \xi_2$.
$r=1$: pure states

- $\mathcal{S}_1 = \{|\xi\rangle\langle\xi| \mid \xi \in \mathcal{H}, \|\xi\| = 1\} = \{\text{pure states}\}$.

- $\mathcal{S}_1 \cong \mathbb{P}(\mathcal{H}) := (\mathcal{H} \setminus \{0\})/\sim$ (complex projective space), where $\xi_1 \sim \xi_2 \iff \exists c \in \mathbb{C}, \xi_1 = c \xi_2$.

- The SLD metric g on \mathcal{S}_1 coincides with the well-known Fubini-Study metric on $\mathbb{P}(\mathcal{H})$ (up to constant).
\(S_1 \cong \mathbb{P}(\mathcal{H}) \) as a complex manifold

- A \((1, 1)\)-tensor field \(J \) satisfying \(J^2 = -1 \)
 \((\text{almost complex structure})\) is canonically defined by

\[
J \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial}{\partial y^i}, \quad J \left(\frac{\partial}{\partial y^j} \right) = -\frac{\partial}{\partial x^i}
\]

for an arbitrary holomorphic (complex analytic) coordinate system \((z^j) = (x^j + \sqrt{-1}y^j)\).
$S_1 \cong \mathbb{P}(\mathcal{H})$ as a complex manifold

- A $(1, 1)$-tensor field J satisfying $J^2 = -1$ (almost complex structure) is canonically defined by

$$J \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial}{\partial y^i}, \quad J \left(\frac{\partial}{\partial y^j} \right) = -\frac{\partial}{\partial x^i}$$

for an arbitrary holomorphic (complex analytic) coordinate system $(z^j) = (x^j + \sqrt{-1}y^j)$.

- $g(JX, JY) = g(X, Y)$.

\(S_1 \cong \mathbb{P}(\mathcal{H}) \) as a complex manifold

- A \((1,1)\)-tensor field \(J \) satisfying \(J^2 = -1 \)
 \((\text{almost complex structure})\) is canonically defined by

\[
J \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial}{\partial y^i}, \quad J \left(\frac{\partial}{\partial y^j} \right) = -\frac{\partial}{\partial x^i}
\]

for an arbitrary holomorphic (complex analytic) coordinate system \((z^j) = (x^j + \sqrt{-1}y^j)\).

- \(g(JX, JY) = g(X, Y) \).

- A differential 2-form \(\omega \) is defined by \(\omega(X, Y) = g(X, JY) \).
$S_1 \cong \mathbb{P}(\mathcal{H})$ as a complex manifold

- A $(1, 1)$-tensor field J satisfying $J^2 = -1$ (almost complex structure) is canonically defined by
 $$J \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial}{\partial y^j}, \quad J \left(\frac{\partial}{\partial y^j} \right) = -\frac{\partial}{\partial x^i}$$
 for an arbitrary holomorphic (complex analytic) coordinate system $(z^j) = (x^j + \sqrt{-1}y^j)$.

- $g(JX, JY) = g(X, Y)$.

- A differential 2-form ω is defined by $\omega(X, Y) = g(X, JY)$.

- g (or (J, g, ω)) is a Kähler metric in the sense that ω is a symplectic form: $d\omega = 0$, or equivalently that there is a function called a Kähler potential f satisfying
 $$\omega = \frac{\sqrt{-1}}{2} \partial \bar{\partial} f.$$
Kahler potential

Let

\[a_{jk} = g \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \right) = g \left(\frac{\partial}{\partial y^j}, \frac{\partial}{\partial y^k} \right), \]

\[b_{jk} = g \left(\frac{\partial}{\partial y^j}, \frac{\partial}{\partial x^k} \right) = -g \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial y^k} \right). \]
Kahler potential

Let

\[a_{jk} = g \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \right) = g \left(\frac{\partial}{\partial y^j}, \frac{\partial}{\partial y^k} \right), \]

\[b_{jk} = g \left(\frac{\partial}{\partial y^j}, \frac{\partial}{\partial x^k} \right) = -g \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial y^k} \right). \]

Then \(f \) is a Kähler potential iff

\[a_{jk} = \frac{1}{4} \left(\frac{\partial^2 f}{\partial x^j \partial x^k} + \frac{\partial^2 f}{\partial y^j \partial y^k} \right), \quad \text{and} \]

\[b_{jk} = \frac{1}{4} \left(\frac{\partial^2 f}{\partial x^j \partial y^k} - \frac{\partial^2 f}{\partial y^j \partial x^k} \right). \]
Quasi-Classical Exponential Family (QCEF)

\[M = \{ \rho_\theta | \theta \in \mathbb{R}^n \} \subset \bar{S} \] is called a quasi-classical exponential family when it is represented as

\[
\rho_\theta = \exp \left[\frac{1}{2} \left(\sum_i \theta^i F_i - \psi(\theta) \right) \right] \rho_0 \exp \left[\frac{1}{2} \left(\sum_i \theta^i F_i - \psi(\theta) \right) \right]
\]

where

\[
\{ F_1, \ldots, F_n \} \subset \mathcal{L}_h(\mathcal{H}),
\]

\[
[F_i, F_j] := F_i F_j - F_j F_i = 0 \quad \text{(commutative),}
\]

\[
\{ \rho_0, F_1 \rho_0, \ldots, F_n \rho_0 \} \quad \text{are linearly independent,}
\]

\[
\psi(\theta) = \log \operatorname{Tr} \left[\rho_0 \exp \left[\sum_j \theta^i F_j \right] \right].
\]
Properties of QCEFs

- **e-, m-connections** are defined by

 \[
 \eta_i := \text{Tr}[\rho_\theta F_i] \quad \mapsto \quad \nabla^{(m)}
 \]

 \[
 \theta^i \quad \mapsto \quad \nabla^{(e)}
 \]

- \((M, g, \nabla^{(e)}, \nabla^{(m)})\) is dually flat, where \(g\) is the SLD metric.

- Suppose \(M \subset S^d\). Then \(M\) is e-autoparallel in \(S^d\), and \((g, \nabla^{(e)}, \nabla^{(m)})\) on \(M\) is induced from \((S^d, g, \nabla^{(e)}, \nabla^{(m)})\).

- \((F_1, \ldots, F_n)\) is an estimator for the coordinates \((\eta_1, \ldots, \eta_n)\) achieving the SLD Cramér-Rao bound.

- Since \(\{F_i\}\) are commutative, there exist an orthonormal basis \(\{x^i\}\) with \(X = \{1, 2, \ldots, d\} = \text{dim } H\) and functions \(f_i: X \rightarrow \mathbb{R}\) such that \(F_i = \sum_{x \in X} f_i(x) x^i\).

- Then we have:

 \[
 p_{\theta}(x) := p_0(x) \exp\left[\sum_{i} \theta_i f_i(x) - \psi(\theta)\right] \quad \text{: a classical exponential family}
 \]

 \[
 M = \{\rho_\theta\} \sim \{p_\theta\}\text{ w.r.t. } (g, \nabla^{(e)}, \nabla^{(m)}).\]
Properties of QCEFs

- e-, m-connections are defined by

 affine coordinates \(\theta^i \rightarrow \nabla^{(e)} \)

 \(\eta_i := \text{Tr}[\rho_\theta F_i] \rightarrow \nabla^{(m)} \)

- \((M, g, \nabla^{(e)}, \nabla^{(m)})\) is dually flat, where \(g\) is the SLD metric.
Properties of QCEFs

- **e-, m-connections** are defined by

 affine coordinates \[\theta^i \] \[\eta_i := \text{Tr}[\rho_\theta F_i] \]

 flat connection \[\nabla^{(e)} \] \[\nabla^{(m)} \]

- \((M, g, \nabla^{(e)}, \nabla^{(m)})\) is **dually flat**, where \(g\) is the SLD metric.

- Suppose \(M \subset S_d\). Then \(M\) is **e-autoparallel** in \(S_d\), and \((g, \nabla^{(e)}, \nabla^{(m)})\) on \(M\) is induced from \((S_d, g, \nabla^{(e)}, \nabla^{(m)})\).
Properties of QCEFs

- **e-, m-connections** are defined by

 \[
 \begin{align*}
 \theta^i &\rightarrow \nabla^{(e)} \\
 \eta_i := \text{Tr}[\rho_\theta F_i] &\rightarrow \nabla^{(m)}
 \end{align*}
 \]

- \((M, g, \nabla^{(e)}, \nabla^{(m)})\) is **dually flat**, where \(g\) is the SLD metric.

- Suppose \(M \subset S_d\). Then \(M\) is **e-autoparallel** in \(S_d\), and \((g, \nabla^{(e)}, \nabla^{(m)})\) on \(M\) is induced from \((S_d, g, \nabla^{(e)}, \nabla^{(m)})\).

- \((F_1 \ldots, F_n)\) is an estimator for the coordinates \((\eta_1, \ldots, \eta_n)\) achieving the SLD Cramér-Rao bound.
Properties of QCEFs (cont.)

• Since \{F_i\} are commutative, there exist an orthonormal basis \{|x\rangle\}_{x \in \mathcal{X}} (eigenvectors) with \mathcal{X} = \{1, 2, \ldots, d = \text{dim } \mathcal{H}\} and functions (eigenvalues) \(f_i : \mathcal{X} \to \mathbb{R} \) (i = 1, \ldots, n) such that

\[
F_i = \sum_{x \in \mathcal{X}} f_i(x) |x\rangle \langle x|.
\]
Properties of QCEFs (cont.)

• Since \(\{F_i\} \) are commutative, there exist an orthonormal basis \(\{|x\rangle\}_{x \in \mathcal{X}} \) (eigenvectors) with \(\mathcal{X} = \{1, 2, \ldots, d = \dim \mathcal{H}\} \) and functions (eigenvalues) \(f_i : \mathcal{X} \rightarrow \mathbb{R} \) (\(i = 1, \ldots, n \)) such that

\[
F_i = \sum_{x \in \mathcal{X}} f_i(x) |x\rangle \langle x|.
\]

Then we have:

\[
p_\theta(x) := \langle x| \rho_\theta |x\rangle = p_0(x) \exp[\sum_i \theta^i f_i(x) - \psi(\theta)]
\]

(: a classical exponential family)

and

\[
M = \{\rho_\theta\} \cong \{p_\theta\} \text{ w.r.t. } (g, \nabla^{(e)}, \nabla^{(m)}).
\]
Complexification of a pure state QCEF

Let \(M = \{ \rho_\theta \} \) be a quasi-classical exp. family:

\[
\rho_\theta = \exp \left[\frac{1}{2} \left(\sum_i \theta^i F_i - \psi(\theta) \right) \right] \rho_0 \exp \left[\frac{1}{2} \left(\sum_i \theta^i F_i - \psi(\theta) \right) \right]
\]

(with the same assumption on \(\{ F_i \} \) as before), and suppose that \(M \subset S_1(\mathcal{H}) \cong \mathbb{P}(\mathcal{H}) \).
Complexification of a pure state QCEF

Let \(M = \{\rho_\theta\} \) be a quasi-classical exp. family:

\[
\rho_\theta = \exp \left[\frac{1}{2} \left(\sum_i \theta^i F_i - \psi(\theta) \right) \right] \rho_0 \exp \left[\frac{1}{2} \left(\sum_i \theta^i F_i - \psi(\theta) \right) \right]
\]

(with the same assumption on \(\{F_i\} \) as before), and suppose that \(M \subset S_1(\mathcal{H}) \cong \mathbb{P}(\mathcal{H}) \).

For

\(z = (z^1, \ldots, z^n) \in \mathbb{C}^n \), \(z^i = \theta^i + \sqrt{-1} y^i \), \(\theta^i, y^i : \text{real} \),

let

\[
\rho_z := \exp \left[\frac{1}{2} \left(\sum_i z^i F_i - \psi(\theta) \right) \right] \rho_0 \exp \left[\frac{1}{2} \left(\sum_i \bar{z}^i F_i - \psi(\theta) \right) \right]
\]
Complexification of a pure state QCEF

Let $M = \{\rho_\theta\}$ be a quasi-classical exp. family:

$$\rho_\theta = \exp \left[\frac{1}{2} \left(\sum_i \theta^i F_i - \psi(\theta) \right) \right] \rho_0 \exp \left[\frac{1}{2} \left(\sum_i \theta^i F_i - \psi(\theta) \right) \right]$$

(with the same assumption on $\{F_i\}$ as before), and suppose that $M \subset S_1(\mathcal{H}) \cong \mathbb{P}(\mathcal{H})$.

For $z = (z^1, \ldots, z^n) \in \mathbb{C}^n$, $z^i = \theta^i + \sqrt{-1} y^i$, $\theta^i, y^i : \text{real}$, let

$$\rho_z := \exp \left[\frac{1}{2} \left(\sum_i z^i F_i - \psi(\theta) \right) \right] \rho_0 \exp \left[\frac{1}{2} \left(\sum_i z^i F_i - \psi(\theta) \right) \right] = U_y \rho_\theta U_y^*$$

where

$$U_y := \exp \left[\frac{\sqrt{-1}}{2} \sum_i y^i F_i \right] : \text{unitary.}$$
Complexification of pure state QCEF (cont.)

Letting \(V \) be a nbd of \(\mathbb{R}^n \) in \(\mathbb{C}^n \) for which \(V \ni z \mapsto \rho_z \) is injective, define

\[
\tilde{M} := \{ \rho_z \mid z \in V \} \quad (\supset M = \{ \rho_\theta \mid \theta \in \mathbb{R}^n \}).
\]
Complexification of pure state QCEF (cont.)

Letting V be a nbd of \mathbb{R}^n in \mathbb{C}^n for which $V \ni z \mapsto \rho_z$ is injective, define

$$\tilde{M} := \{\rho_z | z \in V\} \quad (\supset M = \{\rho_\theta | \theta \in \mathbb{R}^n\}).$$
Complexification of pure state QCEF (cont.)

Letting V be a nbd of \mathbb{R}^n in \mathbb{C}^n for which $V \ni z \mapsto \rho_z$ is injective, define

$$\tilde{M} := \{ \rho_z \mid z \in V \} \quad (\supset M = \{ \rho_\theta \mid \theta \in \mathbb{R}^n \}).$$
Complexification of pure state QCEF (cont.)

Letting V be a nbd of \mathbb{R}^n in \mathbb{C}^n for which $V \ni z \mapsto \rho_z$ is injective, define

$$\tilde{M} := \{\rho_z \mid z \in V\} \quad (\supset M = \{\rho_\theta \mid \theta \in \mathbb{R}^n\}).$$
Complexification of pure state QCEF (cont.)

• \(\tilde{M} \) is a complex (holomorphic) submanifold of \(S_1 \) with a holomorphic coordinate system \((z^i)\), and hence is Kähler w.r.t. \(g_{\tilde{M}} = (\text{Fubini-Study})|_{\tilde{M}} \).
Complexification of pure state QCEF (cont.)

- \tilde{M} is a complex (holomorphic) submanifold of S_1 with a holomorphic coordinate system (z^i), and hence is Kähler w.r.t. $g_{\tilde{M}} = (\text{Fubini-Study})|_{\tilde{M}}$.

- When $n = d - 1$, \tilde{M} is open in S_1.

Complexification of pure state QCEF (cont.)

- \(\tilde{M} \) is a complex (holomorphic) submanifold of \(S_1 \) with a holomorphic coordinate system \((z^i)\), and hence is Kähler w.r.t. \(g_{\tilde{M}} = (\text{Fubini-Study})|_{\tilde{M}} \).

- When \(n = d - 1 \), \(\tilde{M} \) is open in \(S_1 \).

- \(4\psi(\theta) \) gives a Kähler potential on \(\tilde{M} \):

\[
\omega_{\tilde{M}} := \omega|_{\tilde{M}} = 2\sqrt{-1}\partial\bar{\partial}\psi.
\]

Similar to the case of Shima's observation on \(M \) and \(TM \)
Complexification of pure state QCEF (cont.)

- (\tilde{M}, η_i, y^i) forms a Darboux coordinate system:

$$\omega_{\tilde{M}} = \sum_{i=1}^{n} d\eta_i \wedge dy^i.$$
Complexification of pure state QCEF (cont.)

- (\tilde{M}, η_i, y^i) forms a Darboux coordinate system:

$$\omega_{\tilde{M}} = \sum_{i=1}^{n} d\eta_i \wedge dy^i.$$

- Letting $\nabla^{(m)}$ be the flat connection with affine coordinates $(\eta_i; y^i)$ and $\nabla^{(e)}$ be its dual w.r.t. $g_{\tilde{M}}$.
• \((\tilde{M}, \eta_i, y^i)\) forms a Darboux coordinate system:

\[
\omega_{\tilde{M}} = \sum_{i=1}^{n} d\eta_i \wedge dy^i.
\]

• Letting \(\nabla^{(m)}\) be the flat connection with affine coordinates \((\eta_i; y^i)\) and \(\nabla^{(e)}\) be its dual w.r.t. \(g_{\tilde{M}}\),

\[
\nabla^{(e)} \circ J = J \circ \nabla^{(m)} \quad \text{and} \quad \nabla^{(e)} \omega_{\tilde{M}} = \nabla^{(m)} \omega_{\tilde{M}} = 0.
\]
Relation to parallel displacement

\[
duality \iff \forall X, Y, Z, \quad X g(Y, Z) = g(\nabla_X^{(e)} Y, Z) + g(Y, \nabla_X^{(m)} Z)
\]
duality \iff \forall X, Y, Z, \ X g(Y, Z) = g(\nabla^{(e)}_X Y, Z) + g(Y, \nabla^{(m)}_X Z)

\[
g(X, Y) = g(X', Y')
\]

if \(X \xrightarrow{e} X' \) and \(Y \xrightarrow{m} Y' \)
Relation to parallel displacement (cont.)

\[\nabla^{(e)} \circ J = J \circ \nabla^{(m)} \iff \forall X, Y, \ \nabla_{X}^{(e)} J(Y) = J(\nabla_{X}^{(m)} Y) \]
Relation to parallel displacement (cont.)

$$\nabla^{(e)} \circ J = J \circ \nabla^{(m)} \iff \forall X, Y, \quad \nabla^{(e)}_X J(Y) = J(\nabla^{(m)}_X Y)$$

\[
\begin{aligned}
X & \xrightarrow{e} X' \\
\downarrow J & \quad \downarrow J \\
J(X) & \xrightarrow{m} J(X')
\end{aligned}
\]

\[
\begin{aligned}
X & \xrightarrow{m} X' \\
\downarrow J & \quad \downarrow J \\
J(X) & \xrightarrow{e} J(X')
\end{aligned}
\]
Relation to parallel displacement (cont.)

\[\nabla^{(e)} \omega = \nabla^{(m)} \omega = 0 \iff \forall X, Y, Z \]

\[X \omega(Y, Z) = \omega(\nabla^{(e)}_X Y, Z) + \omega(Y, \nabla^{(e)}_X Z) \]

\[= \omega(\nabla^{(m)}_X Y, Z) + \omega(Y, \nabla^{(m)}_X Z) \]
Relation to parallel displacement (cont.)

\[\nabla^{(e)} \omega = \nabla^{(m)} \omega = 0 \iff \forall X, Y, Z \]

\[X \omega(Y, Z) = \omega(\nabla^{(e)}_X Y, Z) + \omega(Y, \nabla^{(e)}_X Z) \]
\[= \omega(\nabla^{(m)}_X Y, Z) + \omega(Y, \nabla^{(m)}_X Z) \]

\[\omega(X, Y) = \omega(X', Y') \]

if

\[X \xrightarrow{e} X' \quad \text{and} \quad Y \xrightarrow{e} Y' \]

or

\[X \xrightarrow{m} X' \quad \text{and} \quad Y \xrightarrow{m} Y' \]
Thank you for listening.