Nonlinear Modeling and Processing Using Empirical Intrinsic Geometry with Application to Biomedical Imaging

Ronen Talmon1, Yoel Shkolnisky2, and Ronald Coifman1

1Mathematics Department, Yale University
2Applied Mathematics Department, Tel Aviv University

Geometric Science of Information (GSI 2013)
August 28-30, 2013, Paris
• Example for Intrinsic Modeling I

- **Molecular Dynamics**
- Consider a molecule oscillating stochastically in water
 - For example, Alanine Dipeptide
- Due to the coherent structure of molecular motion, we assume that the configuration at any given time is essentially described by a small number of structural variables
 - In the Alanine case, we will discover two factors, corresponding to the dihedral angles
• Example for Intrinsic Modeling I

- We observe three atoms of the molecule for a certain period, three other atoms for a second period, and the rest in the last period.

- **The task** is to describe the positions of all atoms at all times:
 - More precisely, derive intrinsic variables that correspond to the dihedral angles and describe their relation to the positions of all atoms.
 - We always derive the same intrinsic variables (angles) from partial observations (independently of the specific atoms we observe).
 - If we learn the model, we can describe the positions of all atoms.
• Example for Intrinsic Modeling II

- Predicting Epileptic Seizures
- **Goal**: to warn the patient prior to the seizure (when medication or surgery are not viable)
- **Data**: intracranial EEG recordings
• **Example for Intrinsic Modeling II**

- **Our assumption**: the measurements are controlled by underlying processes that represent the brain activity

- **Main Idea**: predict seizures based on the “brain activity processes”

- **Challenges**: Noisy data, unknown model, and no available examples
• **Manifold Learning**

- Represent the data as points in a high dimensional space
- The points lie on a low dimensional structure (manifold) that is governed by latent factors
- For example, atom trajectories and the dihedral angles
Introduction

• Manifold Learning

- Traditional manifold learning techniques:
 - Laplacian eigenmaps [Belkin & Niyogi, 03’]
 - Diffusion maps [Coifman & Lafon, 05’; Singer & Coifman, 08’]
Dynamical model: let θ_t be a d-dimensional underlying process (the state) in time index t that evolves according to

$$d\theta_t^i = a^i(\theta_t)dt + dw_t^i, \quad i = 1, \ldots, d$$

where a^i are unknown drift coefficients and w_t^i are independent white noises.

Measurement modality: let z_t be an n-dimensional measured signal, given by

$$z_t = g(y_t, v_t)$$

- y_t is the clean observation component drawn from the time-varying pdf $f(y; \theta)$
- v_t is a corrupting noise (independent of y_t)
- g is an arbitrary measurement function

The goal: recover and track θ_t given z_t
Manifold Learning for Time Series

- The general outline:
 - Construct an affinity matrix (kernel) between the measurements z_t, e.g.,
 \[k(z_t, z_s) = \exp\left\{-\frac{\|z_t - z_s\|^2}{\varepsilon}\right\} \]
 - Normalize the kernel to obtain a Laplace operator [Chung, 97']
 - The spectral decomposition (eigenvectors) represents the underlying factors
The mapping between the observable data and the underlying processes is often stochastic and contains measurement noise

- Repeated observations of the same phenomenon usually yield different measurement realizations
- The measurements may be performed using different instruments/sensors

Each set of related measurements of the same phenomenon will have a different geometric structure

- Depending on the instrument and the specific realization
- Poses a problem for standard manifold learning methods
Intrinsic Modeling

![Diagram of Intrinsic Modeling](image)
• How to Obtain an Intrinsic Model?

Q: Does the Euclidean distance between the measurements convey the information?
Realizations of a random process and measurement noise

\[k(z_t, z_s) = \exp \left(\frac{||z_t - z_s||^2}{\varepsilon} \right) \]

A: We propose a new paradigm - **Empirical Intrinsic Geometry (EIG)**

[Talmon & Coifman, PNAS, 13’]
- Find a proper high dimensional representation
- Find an **intrinsic** distance measure: robust to measurement noise and modality
• Geometric Interpretation

- Exploit perturbations to explore and learn the tangent plane
- Compare the points based on the principal directions of the tangent planes ("local PCA")
The Mahalanobis Distance

- We view the local histograms as feature vectors for each measurement
 \[z_t \rightarrow h_t \]

- For each feature vector, we compute the local covariance matrix in a temporal neighborhood of length \(L \)
 \[C_t = \frac{1}{L} \sum_{s=t-L+1}^{t} (h_s - \mu_t)(h_s - \mu_t)^T \]

 where \(\mu_t \) is the local mean

Definition – Mahalanobis Distance

- Define a symmetric \(C \)-dependent distance between feature vectors
 \[d_C^2(z_t, z_s) = \frac{1}{2} (h_t - h_s)^T (C_t^{-1} + C_s^{-1})(h_t - h_s) \]
• Results

Assumption

- The histograms are linear transformations of the pdf $p(z; \theta)$

- Each histogram bin can be expressed as

$$h_i^j = \int_{z \in \mathcal{H}_j} p(z; \theta) \, dz$$

where \mathcal{H}_j are the histogram bins

Lemma

- In the histograms domain, any stationary noise is a linear transformation

- By relying on the independence of the processes:

$$p(z; \theta) = \int f(y; \theta) q(v) \, dy dv$$

$$g(y, v) = z$$
The Mahalanobis distance:

- Is invariant under linear transformations, thus by lemma, noise resilient
- Approximates the Euclidean distance between samples of the underlying process, i.e.,

\[\|\theta_t - \theta_s\|^2 = d_C^2(z_t, z_s) + O(\|h_t - h_s\|^4) \]

Assumption

- The process \(h_t\) can be described as a (possibly nonlinear) bi-Lipschitz function of the underlying process \(\theta_t\)
- We rely on a first order approximation of the measurement function:

\[h_t = J_t^T \theta_t + \epsilon_t \]

where \(J_t\) is the Jacobian, defined as \(J_t^{ji} = \frac{\partial h^j}{\partial \theta^i} \)
Q: Does the structure of the measurements convey the information?

A: The local densities of the measurements do and not particular realizations

- **Information Geometry** [Amari & Nagaoka, 00’]:
 - Use the **Kullback-Liebler divergence** approximated by the Fisher metric
 \[
 D(p(z_t; \theta) || p(z_{t_0}; \theta)) = \delta \theta_t^T I_t \delta \theta_t
 \]
 where \(I_t\) is the **Fisher Information matrix**

- **EIG**: a similar data-driven metric: consider the following features
 \[
 l_t^j = \alpha_j \log (h_t^j)
 \]

Theorem

- \(I_t = J_t^T J_t\) (underlying manifold dimensionality)
- \(C_t = J_t J_t^T\) (feature vectors dimensionality)
• Anisotropic Kernel

- Let \(\{ \mathbf{z}_t \}_{t=1}^N \) be a set of measurements

 - For each measurement, we compute the local histogram and covariance

- Construct an \(N \times N \) symmetric affinity matrix

 \[
 W^{ts} = c \exp \left\{ - \frac{d_C^2(\mathbf{z}_t, \mathbf{z}_s)}{\varepsilon} \right\}
 \]

 - Approximates the Euclidean distances between the underlying process

 - Invariant to the measurement modality and resilient to noise

- The corresponding Laplace operator \(\mathbf{L} \) can recover the underlying process

- Compute the eigenvalues \(\{ \lambda_i \}_{i=1}^N \) and eigenvectors \(\{ \varphi_i \}_{i=1}^N \) of \(\mathbf{L} \)

- The leading eigenvectors represent the underlying process
Molecular Dynamics

[Dsilva, Talmon, Rabin, Coifman & Kevrekidis, 13’]

- Task: track Alanine Dipeptide in water from partial observations
• **Molecular Dynamics**

[Dsilva, Talmon, Rabin, Coifman & Kevrekidis, 13’]

- 3 Snapshots of the true and reconstructed trajectories
 - Using a multiscale method (Laplacian Pyramid [Rabin & Coifman, SDM, 12’])
• **Applications**

• **Predicting Epileptic Seizures**

Results:

- **3D points** - the 3 leading eigenvectors (each point – an EEG time frame)
• Bayesian Filtering

How to do processing in the inferred parametric domain?

 – Combine the inferred geometry and the time series dynamics

Main idea:

 – Define a pseudo-likelihood function based on the inferred intrinsic model
 – Empirically define a prior function based on past observations
 – Combine the two using a Bayesian framework

Assumption:

 – Locally, the distribution in the embedded domain is a good approximation of the distribution in the underlying process original domain
 – The posterior pdf of the underlying process $p(\theta_t | \theta_{t-1}, z_t)$ can be estimated based on the embedding
• Pseudo-likelihood

\[\Psi(z_t) | \theta_t \sim \mathcal{N}(\theta_t, C_{\theta,t}) \]

Inaccuracy of the representation
Explicit use of the chronological order to obtain empirical dynamical model

\[\theta_t | \theta_{t-1} \sim \mathcal{N} \left(\theta^f_{t-1}, C^f_{\theta,t-1} \right) \]
Represent the posterior pdf by a set of (random) samples

\[p(\theta_t | \theta_{t-1}, z_t) \]

- Let \(\{ \theta_t^{(k)} \}_{k=1}^{P} \) be a set of support samples ("particles") that characterizes the posterior pdf given the previous stage and the new measurement.
- Let \(\{ w_t^{(k)} \}_{k=1}^{P} \) be a set of weights associated with the particles.

\[p(\theta_t | \theta_{t-1}, z_t) \approx \sum_{k=1}^{P} w_t^{(k)} \delta(\theta_t - \theta_t^{(k)}) \]
\textbullet{} Where the weights are denoted as

\[w_{t}^{(k)} \triangleq p(\theta_{t}^{(k)} | \theta_{t-1}, z_{t}) \]

with \(\sum_{k=1}^{P} w_{t}^{(k)} = 1 \)

\textbullet{} By Bayes’ theorem

\[
\begin{align*}
 w_{t}^{(k)} & \propto p(\theta_{t}^{(k)} | \theta_{t-1})p(z_{t} | \theta_{t}^{(k)}) \\
\end{align*}
\]

where the densities can be estimated in the embedded domain.
• MMSE Estimator

For example, based on the estimated posterior pdf, the MMSE estimator of the factors at t can be computed by

$$
\hat{\theta}_t = \mathbb{E}[\theta_t | \theta_{t-1}, z_t] = \int \theta_t p(\theta_t | \theta_{t-1}, z_t) d\theta_t
$$

$$
\approx \sum_{k=1}^{P} p(\theta_t^{(k)} | \theta_{t-1}, z_t) \theta_t^{(k)} = \sum_{k=1}^{P} w_t^{(k)} \theta_t^{(k)}
$$

requires few initial values of the original factors for alignment.
• Biomedical Imaging

- Imaging model - consider a 2D shape measured by a 1D linear sensor array
 - Rigid biological material that vibrates over time
 - Emission of radiation or light
 - Noisy measurements of the instantaneous amount of radiation that travelled through the object
• **Objective:** to track the object based on the measurements

We simulated a diffusion process and output signals of 15 sensors with Gaussian noise:

\[z_t^i = f(p_i - \theta_t) + v_t^i \]

• **Note:** the simulated model was not used for the inference and the tracking
• Tracking the center position of the shape:

 – The yellow curve is the true position of the center

 – The vertical gray strips represent the posterior pdf estimate

 – The solid black curve is the expected value (MMSE estimator)
• **Summary**

- The notion of *empirical intrinsic modeling*
 - Empirical geometry of local distributions

- *Nonlinear processing framework* in the low dimensional intrinsic domain

- Used in a wide variety of applications
 - Nonlinear problems without existing definitive models
 - In particular, *biomedical imaging*
 (based, for example, on photon counter sensors)
THANK YOU