Vitesse variable des machines à induction
Structure des convertisseurs et commande vectorielle

Jean DHERS, Henri GODFROID, Jean-Louis SANHET
CEGELEC

Grâce aux progrès du Génie électrique, les moteurs asynchrones remplacent de plus en plus souvent les moteurs à courant continu dans les applications exigeant des vitesses variables. L'article décrit en détail la conception, la réalisation et les performances des variateurs de fréquence « Varial », qui assurent l'alimentation et le contrôle vectoriel des machines à induction.

Par l'association des techniques des courants forts (électrotechnique, électronique de puissance) et des courants faibles (électronique de commande), appelée aujourd'hui « Génie Electrique », des progrès considérables ont été réalisés ces dix dernières années. Ces progrès touchent essentiellement le domaine de la conversion de l'énergie électrique qui, au travers de l'électronique de puissance, permet de donner à l'énergie électrique dans le plan tension/fréquence, la forme la plus souple pour l'utiliser, et celui de la mise en vitesse variable des machines à courant alternatif, qui constitue un cas particulier, mais primordial de la transformation d'énergie électrique en énergie mécanique.

Pour les équipements industriels dans lesquels il est nécessaire de faire varier la vitesse des entraînements électronique, il ne fait aucun doute que le moteur asynchrone s'impose par sa simplicité et par la robustesse mécanique, résultant essentiellement de l'homogénéité de sa partie tour- nante. Cependant, il reste des progrès à faire dans la maîtrise du comportement dynamique de ce moteur en variation de couple et de vitesse, lorsque les performances requises sont sévères. Cette maîtrise suppose la connaissance quantitative des phénomènes transitoires dont le moteur est le siège, phénomènes non linéaires et multivariables.

L'approche que nous allons exposer ne se résume pas de façon optimale le contrôle. Elle donne cependant des résultats très acceptables dans le contexte d'application aux entraînements de forte puissance, qui présentent des contraintes liées principalement aux performances des interrupteurs utilisés.

Nous ne nous étendrons par sur les applications que l'on peut qualifier maintenant de « classiques » où les moteurs asynchrones remplacent systématiquement les moteurs à courant continu pour la vitesse variable, c'est-à-dire tous les entraînements de ventilateurs, compresseurs, pompes, convoyeurs, broyeurs, extracteurs, granulateurs, malaxeurs, etc. Leur publicité n'est plus à faire, car le retour d'expérience atteint déjà quelques années, voire plus de dix ans.

Certains processus attendent encore le passage au moteur à induction ; d'autres ne l'on fait que récemment et de manière tout à fait satisfaisante. Où est le problème ?

Pour certains processus, la qualité du couple revêt une grande importance, pour d'autres, ce sont les performances dynamiques de couple à vitesse nominale ou au voisinage de l'arrêt. Citons parmi ces processus, qui sont passés assez récemment à la vitesse variable par moteurs asynchrones :

- les lignes de parachèvement de la métallurgie : lignes de refendage, étaillage, galvanisation, dégraissage, vernissage, peinture, recuit continu, etc. CEGELEC seule a mis en service dans ce secteur plus de mille moteurs asynchrones à vitesse variable, notamment sur des dérouleuses et enrouleuses ;
- les entraînements de machines à papier : sectionnelles, refendueuses, visiteuses, coucheuses etc. ;
- les bancs de rouleaux pour le déplacement des produits tels que : lingots, barres, etc., sur les tables de travail ou vers les refroidisseurs des trains à chaud en métallurgie.

Dans tous ces processus multi-moteurs, le couplage au réseau peut être réalisé par un redresseur unique, l'énergie étant alors distribuée aux divers sous-ensembles « convertisseur-machine » en courant continu. Ce principe est intéressant par la minimisation de la consommation au réseau des
puissances active et réactive, mais aussi et surtout par l’indépendance qu’il procure au processus vis-à-vis des disparitions transitoires du réseau d’alimentation en énergie.

Cet aspect de la continuité de service mériterait un développement. Disons simplement ici, que c’est le réservoir d’énergie cinétique global des divers entraînements qui est sollicité dans ce cas pour maintenir le jeu de barres de distribution d’énergie électrique sous tension, ce qui se traduit par un ralentissement général, transitoire, des entraînements, ralentissement proportionné à la durée de l’absence de réseau, mais en aucun cas le processus ne s’interrompt.

Les moteurs asynchrones à vitesse variable sont appliqués aussi aux machines d’extraction (mines) et au levage en général, à la propulsion terrestre et bientôt marine.

Bientôt aussi, les processus les plus exigents en qualité de couple et en performances dynamiques, tels que certains laminatoirs à froid par exemple, seront entraînés par des moteurs asynchrones à cage.

Il fallait, pour permettre cette modernisation de la motorisation électrique, que la commande des moteurs asynchrones à cage permît la maîtrise du couple que requièrent la plupart des processus évoqués ci-dessus. C’est l’état de cet art, vu au travers de notre société, que nous allons évoquer maintenant.

1 Structure à deux niveaux : gammes « pleine onde » (a) et MLI (b).

Dans les deux gammes : « pleine onde » et MLI, les équipements sont standardisés suivant quatre valeurs de la tension alternative : 380 V ; 440 V ; 500 V et 660 V.

Les puissances s’échelonnent de 75 kVA à 1 000 kVA. Des valeurs de puissance supérieures, jusqu’à 2 000 kVA en 660 V, sont obtenues par mise en parallèle de deux « ponts machine ».

Les GTO utilisés sont de type 600, 1 000, 1 600, 2 000 et 3 000 A coupés. Leur tenue en tension va de 1 250 V à 2 500 V.

Ce sont des GTO « rapides », sauf le 3 000 A dont la fréquence de commutation peut être de 600 Hz.

Les pertes totales (conduction et commutation) sont minimisées et n’exigent pas de condensateurs de snubbers de forte valeur ; les pertes dans les circuits snubbers sont ainsi relativement faibles et ne nécessitent d’utiliser des snubbers actifs que pour les puissances supérieures (GTO 3 000 A).

2 Structure dite à trois niveaux

Le schéma de principe est représenté à la figure 2.

Ce schéma utilise dans le pont machine douze interrupteurs, réalisés au moyen d’un ou deux GTO en série, suivant le niveau de tension. Il a les mêmes caractéristiques côté réseau que le schéma MLI à deux niveaux, soit essentiellement un bon facteur de puissance.

Ce montage se justifie pour des niveaux de tension d’au moins 1 500 V et s’applique bien dans les tensions normalisées de 3,3 ; 5,5 et 6,6 kV. Les puissances réalisables à ces différents niveaux de tension, en fonction du type de refroidissement (à air ou à eau) et de la nature du couple résistant (constant ou en kW² par exemple) s’étagent de 2 500 à 12 000 kW à l’arbre du moteur.

Ce montage produit une onde de tension de bonne qualité avec une cadence de commutation des GTO faible. Par la commande des GTO, chaque phase du moteur, peut être raccordée successivement à trois niveaux de potentiel (fig. 3),
Electronique de puissance : les principes de commande

2 Structure à trois niveaux.

3 Niveaux de potentiel pour la commande des GTO.

4 Formes d'ondes obtenues
 a) MLI deux niveaux.
 b) MLI trois niveaux.
ce qui procure, même en commande en « pleine onde », une forme d’onde assez proche d’une sinusoidale comme on le verra plus loin.

Le rendement des convertisseurs de ce type peut atteindre 0,98 au point de puissance nominale.

En ce qui concerne la pulsation du couple électromagnétique, elle est très faible à basse vitesse, car le rapport entre la fréquence de hachage et la fréquence fondamentale devient très grand. On peut indiquer, pour se fixer des ordres de grandeur, que sur toute la plage de variation de la vitesse, de 0 à la vitesse maximale, les composantes à basse fréquences de l’ensemble des harmoniques de couples, c’est-à-dire de fréquence inférieure à environ trois fois la fréquence nominale (180 Hz pour un moteur de fréquence nominale 60 Hz) sont très faibles. Pour un moteur dont le « courant de démarrage direct sur réseau » est de cinq fois son courant nominal, les pulsations de base fréquence ont des amplitudes inférieures à 1 % du couple nominal. Les pulsations de couples à des fréquences supérieures à 3 \(\omega_n \) sont, dans tous les cas, d’amplitudes inférieures à 12 % du couple nominal et, lorsque le moteur est à la fréquence nominale de 60 Hz par exemple, les seules composantes notables de l’ensemble de ces couples sont à 360 Hz et 720 Hz et leurs amplitudes respectives sont de l’ordre de 5 % et 2 % du couple nominal. Ces valeurs sont tout à fait acceptables pour la majorité des applications. Elles pourraient toutefois, si nécessaire, être réduites dans des cas particuliers d’application.

Forme d’onde du courant de phase machine

Nous parlerons, à la fin du chapitre consacré à la commande, des contraintes imposées par les semi-conducteurs de puissance (GTO), essentiellement la cadence de commutation. Mais la limitation de cette fréquence de commutation présente aussi un intérêt d’ordre économique : la réduction des pertes de commutation et donc l’optimisation « thermique » de l’équipement (meilleur rendement et moindre coût). Elle impose de choisir au mieux les « motifs » de MLI de manière à ne pas augmenter la crête de courant coupé et à ménager autant que possible la qualité d’onde (faible taux d’harmoniques de courant — faible pulsation de couple).

La figure 4 montre quelques résultats obtenus par application de ces « compromis ».

Structure de la commande

Démarche de recherche et d’application

La connaissance s’acquiert toujours par étapes successives et notre choix a été une progression dans la complexité de la commande. Alors même que des études sont en cours, en collaboration avec l’Université, pour mettre au point une commande de type multivariable avec observateur d’états, nous avons conduit dans nos propres laboratoires et bureaux d’études, la mise au point d’une commande simple dont les objectifs sont bien sûr relativement modestes.

Puisque nous proclamons l’utilité de la progressivité dans notre démarche, il est de bon ton de commencer par le commencement, à savoir qu’on ne peut commander correctement que ce que l’on connaît. Tout repose donc sur la connaissance du procédé contrôlé... sur sa modélisation.

Pour dégrossir le problème, il convient tout d’abord d’avoir l’architecture du « variateur » présente à l’esprit. Il est banal de présenter les fonctions du variateur : un coup d’œil à la figure 5 sera suffisant.

Il est plus intéressant de structurer ce même variateur du point de vue de la commande.

La figure 6 fait apparaître des sous-ensembles presque indépendants. Nos approximations successives consisteront d’abord la première étape par laquelle le préactionneur (c’est-à-dire le convertisseur d’énergie et sa commande séquentielle — MLI) est indépendant de la machine.

Les variables contrôlées par le préactionneur sont les tensions appliquées à la machine, en amplitude et phase, au moyen des instants de commutation (fig. 7).

Dans cette étape, nous considérons de même, que l’actionneur, c’est-à-dire la machine électrique, ou du moins sa partie électro-magnétique productrice de couple, ainsi que la commande qui y est associée, sont indépendantes du système.

Les variables contrôlées par l’actionneur sont un courant producteur de flux et un courant producteur de couple, au moyen du préactionneur (alors considéré comme un amplificateur).

La variable contrôlée dans le système est la vitesse (ou toute autre variable mécanique), et par définition le moyen d’action est l’actionneur avec ses propres variables. Il est, pour le système, considéré comme un amplificateur.

Nous venons de postuler que les divers amplificateurs en cascade sont indépendants, et nous savons bien que cela est
6 Structuration du variateur en sous-ensembles presque indépendants.

7 Fonctions du préactionneur...

faux pour mille et une raisons... dont les dernières et non les moindres relèvent du couplage entre MLI et machine, avec entre autres les comportements harmoniques ou encore l'influence des temps morts. Cependant, cette approximation permet de dégrosir efficacement les algorithmes de commande. Bien sûr, des précautions seront prises pour pouvoir vivre avec tous ces phénomènes et faire en sorte qu'ils restent secondaires, mais celles-ci ne sont pas l'objet du présent papier.

Modèle de la machine

Depuis longtemps, on a enseigné aux ingénieurs que la machine à induction peut être représentée par un schéma...
monophasé équivalent. Nos anciens l'ont utilisé avec bonheur pour rendre compte des régimes permanents à fréquence fixe. Nous l'utilisons ici pour préciser les notations en valeurs réduites (fig. 8).

Pour rester simples, nous nous plaçons bien sûr, dans l'hypothèse magnétique linéaire.

Ce schéma, bien connu, peut être agréablement transformé de façon à conserver les valeurs externes (u_x, i_x) en amplitude et phase. L'écriture des équations et leur résolution conduit à deux possibilités : un schéma à fuites totales au rotor ($m = x_e/x_s$) et un schéma à fuites totales au stator ($m = x_s/x_e$).

Nous préférons ce dernier qui fait apparaître deux branches en parallèle dont l'une est purement active alors que l'autre est purement active (fig. 9). Ce modèle statique permet d'illustrer un point de fonctionnement au moyen d'un diagramme vectoriel qui met en évidence un courant producteur de flux — appelons le i_q — et un courant producteur de couple — appelons le i_d (fig. 10).

On peut reconnaitre sur ce diagramme : le flux total, le flux d'entrefer et le flux statorique.

Enfin, nous reconnaissons à ce schéma un rôle de guide qui permet d'orienter la recherche d'une mise en forme des équations dynamiques. En d'autres termes, on y voit pointe le découplage des variables qui permet de transformer, sous certaines conditions, un problème de nature multivariable en multiples problèmes monovariables.

Le modèle dynamique de la machine sera établi dans les axes d et q de la transformation de Park, qui peut être considéré comme un produit de transformations : triphasé à biphasé, puis changement de repère (rotation).

La figure 11 résume les opérations en « recette pour (re)touver la quadrature de la machine ».

Le choix judicieux du repère permet une simplification remarquable de l'expression des équations différentielles qui rendent compte du fonctionnement de la machine.

Pour suivre le démarrage, la figure 12 donne les principales étapes de la formalisation. On notera les allégements d'écriture donnés par :

$$
\begin{align*}
 r' &= q^2 r \\
 q' &= q^2 r + r \\
 T_s &= (r_i/r'_i) \cdot T_i
\end{align*}
$$

1) Triphasé \rightarrow Biphasé équivalent

(Transformation de Park)

$$
\begin{bmatrix}
 U_a \\
 U_b \\
 U_c
\end{bmatrix}
= \begin{bmatrix}
 -1 & 2 & -1 \\
 -2 & 1 & 0 \\
 1 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
 V_a \\
 V_b \\
 V_c
\end{bmatrix}
$$

et inversement

$$
\begin{bmatrix}
 V_a \\
 V_b \\
 V_c
\end{bmatrix}
= \begin{bmatrix}
 -1 & 2 & 0 \\
 2 & 0 & 0 \\
 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 U_a \\
 U_b \\
 U_c
\end{bmatrix}
$$

2) Choix du repère

3) Résultat

Simplification du modèle mathématique

$$
\begin{align*}
 u_e &= r_i i_e + \frac{1}{\omega n} \frac{d\phi_e}{dt} \\
 \phi_e &= i_e + l_m e_i
\end{align*}
$$

10 Diagramme vectoriel des courants et des flux.

11 Recette pour trouver la quadrature.
Equations dans le repère d'enroulement :
\[u_1 = r_s l_i + \frac{1}{\omega_n} \frac{d\phi_i}{dt} \]
\[u_2 = r_i l_i + \frac{1}{\omega_n} \frac{d\phi_i}{dt} \]
\[\phi_i = l_s l_i + l_h e^{j\omega} l_i \]
\[\phi_i = l_h e^{-j\omega} l_i + l_r l_i \]

Equations dans le repère synchronisé :
\[u_a = r_s l_a + \frac{1}{\omega_n} \frac{d\phi_a}{dt} + j f_s \phi_a \]
\[u_r = r_r l_r + \frac{1}{\omega_n} \frac{d\phi_r}{dt} + j f_r \phi_r \]
\[\phi_a = x_s l_a + x_h l_r \]
\[\phi_r = x_h l_r + x_r l_r \]
\[\omega = \omega_m (l_r \cdot \phi_r) \]
avec :
\[f_s = \frac{\omega_h}{\omega_n} \]
\[f_r = \frac{\omega - \omega}{\omega_n} = \frac{\omega_r}{\omega_n} \]

On élimine les courants dans les relations de tensions
On exprime :
\[\phi_a (1 + T_{sp}) = \omega_n T_s u_a + j h \phi_r + x_h l_r \]
\[\phi_r (1 + T_{rp}) = -j h r \phi_r + x_h l_r \]

Qui établissent le découplage
Avec axe d suivant \(\phi_r \) :
\[\phi_r = \phi_{rd} - x_h \frac{l_{sd}}{1 + T_{rp}} \]
\[l_{sd} = \omega_n T_s \frac{f_r}{1 + T_{rp}} - \frac{h r}{1 + T_{rp}} \]
\[U_{sd} = r_s (1 + T_{sp}) l_{sd} + \frac{p}{\omega_n} q \phi_{rd} - \sigma x_s f_s l_{sd} \]
\[U_{eq} = r_s (1 + T_{sp}) l_{eq} + f_s q \phi_{rd} - \sigma x_s f_s l_{eq} \]
\[m = l_{eq} (q \phi_{rd}) \]

12 Modèle dynamique.

13 Traduction graphique des équations différentielles. Schémas blocs.
L'intérêt de ce traitement nous semble être d'abord pédagogique. Il conduit en effet à un schéma bloc qui présente bien des similitudes avec celui de la machine à courant continu.

La traduction brute des équations correspond à la figure 13, tandis que la figure 14 montre similitudes et différences avec la machine à courant continu.

L'analogie est suffisamment remarquable entre u_p, w_p, i_q et i_q, et aussi entre les flux φ pour se passer de commentaire.

On note également que ce schéma met en évidence que la fréquence statique est une conséquence du fonctionnement et non pas une cause. C'est la machine qui fixe la fréquence et non pas la fréquence qui pilote la machine (sauf peut-être pour la part fréquence rotorique).

La fonction autopilotage apparaît donc clairement ici.

En ce qui concerne les différences, on note en particulier les branches de couplage σ, x, f, dont le gain est proportionnel à la fréquence statique. La réaction prépondérante est due à i_q sur u_p.

Le résultat ainsi établi suggère la commande dont le principe repose sur :
- un régulateur de vitesse ;
- un régulateur de courant producteur de couple ;
- un régulateur de courant producteur de flux ;
- une commande autopilotée dans le repère statique ;
- des actions de découplage agissant en boucle ouverte pour rendre indépendants les courants i_q et i_q.

Enfin, nous soulignerons la convention de notations : i_q et i_q correspondent aux vrais courants découplés dans la machine elle-même, i_q et i_q correspondent aux commandes dont on espère qu'elles auront pour conséquence i_q et i_q.

Commande

Principe

L'ébauche vient d'être donnée en tant que conclusion sur la modélisation de la machine.

On en déduit un schéma de principe de la commande, issu de la structure cascade présentée en introduction et du modèle dynamique de la machine (fig. 15).

Un régulateur de vitesse traditionnel (PID) fournit une consigne de couple. Celle-ci, corrigée par le flux, devient consigne $i_q^*(i_q)$. La consigne $i_q^*(i_q)$ peut être soit fixe (zone à flux constant), soit issue d'un régulateur de tension.

Les régulateurs i_q, i_q sont des PID usuels dont les sorties viennent corriger les tensions prédites qui assurent les compensations de couplage $(\sigma x, f)$, avec action de i_q sur u_p et surtout i_q sur u_q.

Il en résulte les tensions de commandes $u_q^*(i_q)$ et $u_q^*(u_q)$ qui subissent les transformations de passage au repère temporel statique.

Les mesures i_q, et éventuellement u_q, ont été transformées de triphasées à biphasées (a/f), puis en module/argument. A ce
Electronique de puissance : les principes de commande
dernier, on a soustrait l’argument de référence \(\theta_k\) qui est la
position du flux rotatoire, les mesures sont alors disponibles
dans les repères \(d, q(m, a)\).

Le même argument de référence sert à la transformation
directe et à la transformation inverse. Il est la somme de la
position du rotor mesurée et de la position du flux rotatoire
par rapport au rotor qui elle, est initialisée, puis prédite. La
prédiction est définie à partir de la mesure \(i_p\) de la valeur du
flux et de la résistance rotatoire. On note qu’une valeur
fausse de la résistance rotatoire \(r_\phi\) n’est pas un obstacle au
bon fonctionnement des changements de coordonnées.

Dans cette désadaptation, il résultera que les axes \((d, q)\) et
\((m, a)\) ne seront plus confondus, mais déphasés d’un angle
\(\lambda\). C’est ainsi que sans compensation des variations de
\(r_\phi\) dues à la température, un échauffement de la machine
(augmentation de \(r_\phi\)) conduira à des variations de flux qui
sont fonction de la nature de l’asservissement principal
(vitesse \(n\), ou courant producteur de flux \(i_p\)).

Par exemple dans ce dernier cas, \(i_p\) et \(i_a\) sont maintenus
constants, et la rotation relative des axes \((a, m)\) et \((d, q)\)
conduit à augmenter le flux. Une commande à hautes
performances dynamiques doit impérativement être corrigée
de cet effet. Cette correction peut être assurée par une boucle
to action lente ; elle nécessite la connaissance du flux (observateur)
or à défaut la mesure des tensions, ou encore l’erreur
d’amplitude des corrections statiques issues des régulateurs
\(i_p\) et \(i_w\).

Il est bien évident que ce schéma de principe peut être
accommodé de bien des façons différentes. Ainsi, les régulateurs
de courant peuvent changer de repère. On peut les
imaginer dans le repère temporel statique, il y en a alors
deux ou trois qui contrôlent le courant de phase. Cette
disposition conduit à un schéma relativement simple, illustré
par la figure 16.

Bien que modestes, les performances dynamiques obtenues
sont tout à fait satisfaisantes pour un bon nombre d’applications,
et les différences de comportement sont faibles avec celui
d’un variateur un quadrant pour machine à courant continu.

Ce schéma est utilisé pour la commande de variateurs
conçus pour alimenter des machines de 1 à 75 kW. Le
freinage y est prévu, sur résistance, au travers d’un hacheur
régulant la tension de boucle.

♦ Contraintes

Ce premier exemple, appliqué à une petite puissance, est
traité avec des transistors IGBT pouvant commuter à haute
fréquence. La commande du prédéconneur est alors une
MLI à porteuse fixe, voisine de 3 kHz, ce qui assure, sans inconvénient
coût machine, une commande simple qui permet
effectivement de contrôler amplitudes et phases des tensions
(voir les techniques VVC — voltage vector control — pour
assurer la modulation).

Dans notre cas, qui vise des puissances de plusieurs centaines
de kW et même largement supérieures à 500 kW (qui
semble être actuellement la limite raisonnable des transistors),
avec, nous devons utiliser des GTO, qui même rapides, s’accommodent mal, nous l’avons vu, de fréquences de commutation
supérieures à 600 Hz.

La bonne vieille règle, qui laisse présager des difficultés de
sous-harmoniques si le rapport entre fréquence porteuse
et fréquence machine n’est pas au moins de vingt, indique donc
que, au-dessus de 20 ou 25 Hz, il est prudent de synchroniser
de fréquences porteuse et machine.

Et c’est là que tout se gâte, car il y a antinomie entre cette
synchronisation et le choix libre de la phase de la tension
machine. Nous venons de perdre un degré de liberté. Voilà
pourquoi, en attendant mieux, nous avons choisi une
commande en \(U\) et \(f_n\) c’est-à-dire en tension et fréquence,
pour l’étage prédéconneur. La figure 17 illustre les modes de
fonctionnement du prédéconneur (modulateur à largeur d’impulsions).

On y remarque que le mode synchrone est optimisé au-dessus de 30 Hz. C’est dire que les instants de commutation
sont précalculés pour que l’onde générée réponde à un
critère donné : par exemple, élimination d’un harmonique de
rang bas, ou bien limitation de la crête de courant coupé.

A noter que si l’on veut minimiser des harmoniques de
couple, ce sont deux rangs d’harmoniques de tension qu’il faut éliminer.

L’amélioration du spectre dans les rangs bas, se traduit toujours
par une détérioration aux fréquences élevées. Cette
contrainte capitale due à l’association MLI-machine a donc
dicté le choix des grandeurs de commande du prédéconneur.

![Principe de commande à refère temporel statique](image16)

16 Schéma avec régulateurs de courant à repère temporel statique.

![Modes de fonctionnement du prédéconneur](image17)

17 Modes de fonctionnement du prédéconneur (commande en \(U\) et \(f_n\)).
La commande que nous venons de décrire est réalisée en temps réel par deux microcontôleurs 80 C 196 KC.

Ce sont les derniers nés de la famille des microcontrôleurs 16 bits d’INTEL.

On peut les caractériser brièvement par les performances suivantes :

- fréquence d’horloge 16 MHz ;
- bus de données et d’adresses 16 bits ;
- instructions sur données de 8, 16 ou 32 bits ;
- temps d’exécution typique pour une instruction : 0,625 µs,
- multiplication 16 x 16 en 1,75 µs ;
- 2 x 256 octets de registres accumulateurs RAM interne ;
- serveur de transactions avec les périphériques ;
- 28 sources d’interruptions ;

Elle comprend :

- des entrées et sorties logiques isolées pour le traitement des fonctions séquentielles : ordre de marche, JOG avant et arrière, etc. ;
- l’élaboration des seuils de protections en courant et en tension du pont machine.

Elle assure la mise en forme de :

- la mesure de tension continue à l’entrée du convertisseur ;
- la mesure du courant statogique (2 voies) ;
- la consigne de vitesse n* ;
- la consigne de couple m*.

La SCB 612 comporte un microcontrôleur 80 C 196 KC, des EPROMS contenant le programme, une RAM secteur pour la sauvegarde des paramètres, une bascule de détection de défauts, un circuit logique programmable pour le traitement séquentiel d’informations logiques.
Electronique de puissance : les principes de commande

Elle assure les fonctionnalités suivantes :
- modulation d’impulsion, asynchrone et synchrone ;
- échantillonnage des courants statoriques en synchronisme avec le modulateur ;
- la commande des 6 GTO (ou transistors) du pont machine ;
- les fonctions séquentielles liées au variateur : conditions préalables, enclenchement, ordre de marche/arrêt etc. ;
- les différentes protections, en tension et courant notamment ;
- le paramétrage :
 * réglage des pentes, limitation et gains des régulateurs,
 * modèle de la machine,
 * seuils des protections.

Ce paramétrage peut se faire localement, sur la carte, à l’aide d’un miniclavier et d’un afficheur alphanumérique ou à distance à partir d’un PC relié au moyen d’une liaison série en protocole MODBUS.

SCN 615

La carte SCN 615 comporte un microcontrôleur 80 C 196 KC de la mémoire RAM et EPROM, un circuit logique d’interface avec un générateur d’impulsions ainsi que des interfaces utiles à la commande d’un pont réseau.

Elle assure les fonctionnalités suivantes :
- la mesure angulaire de rotation λ par traitement des signaux (tours) provenant du générateur d’impulsions entraîné par la machine et l’élaboration par dérivation de λ du signal de vitesse n ;
- le contrôle vectoriel (modèle machine, i_x, i_y, u_x, u_y) ;
- l’élaboration des consignes u_x^* et f^* pour le microcontrôleur de la SCN 612 qui assure la fonction de modulation ;
- la commande des six thyristors GTO ou transistors du pont réseau lorsqu’il y a lieu (équipement comportant le freinage en récupération sur le réseau, ou le filtrage dynamique d’harmoniques par exemple). Remarque : une version allégée SCN 615 A ne comporte pas cette option ;
- une liaison série à 9 600 bauds vers un automate en protocole MODBUS (en option) ;
- une liaison série rapide à 250 k bauds vers un microcalculateur en protocole SYGOLAC (en option). Cette option est utilisée notamment pour le transfert de références de vitesse ou traction (couple) dans le cas (fréquent) de procédés multimeuteurs (exemples : lignes de parachèvement en métallurgie, sectionnelles de machine à papier,...).

La figure 18 présente une vue simplifiée de l’association de ces différentes cartes et de leurs fonctionnalités respectives.

Résultats

Avant d’aborder les résultats, nous pouvons indiquer une mesure qui nous paraît intéressante : celle de la constante de temps rotorique et de la réactance de fuites totales au stator.

La méthode indiquée s’applique si le modèle proposé n’est pas trop faux. Rappelons qu’il se place dans l’hypothèse magnétique linéaire et que nous n’avons pas tenu compte des pertes fer.

Une mesure de U_r et I_r moteur à vide, avec enregistrement du transitoire de tension est riche d’enseignement. Le moteur est lancé à vide, on bloque le courant statorique, et on enregistre la tension (fig. 19 et 20) :
- le saut brusque de tension est voisin de $\sigma . x_r . i_r$;
- la tension décroît avec la constante de temps rotorique T_r.

19 Tension statorique u_r, (200 V/div, 0,5 s/div, initial 40 Hz à vide).
20 Tension statique u_r (200 V/div, 5 ms/div, initial 40 Hz à vide).

Il convient de vérifier que la vitesse est restée suffisamment constante pendant l’enregistrement (peu de frottements et forte inertie).

Cette machine à induction "se flirge" aussi comme une machine à courant continu (fig. 21).

Le rotor de la machine étant bloqué, si la magnétisation de la machine est suivie d’une demande de couple (courant actif), on observe les résultats de la figure 22.

Il est à noter que la vérification de la mesure de la fréquence rotorique élaborée dans la commande (souvent un problème délicat) peut très facilement être réalisée à l’arrêt, car dans ce cas, la fréquence rotorique est égale à la fréquence statique et l’enregistrement de la figure 23 le montre.

Les figures 23 et 24 comparent la mesure du courant I_r et du capteur de couple monté sur l’arbre de transmission.

Mais il s’agit de résoudre des problèmes de vitesse variable. La figure 25 donne un exemple de réponse.

Améliorations envisagées et évolutions futures

Des travaux sont en cours pour améliorer encore la qualité de la modulation de la tension statique.

De nombreux paramètres sont à prendre en compte :
- qualité d’onde synthétisée : contenu harmonique, pulsation de couple, sollicitation des interrupteurs, rendement ;
- commandabilité du système : espace de liberté accordé à la commande vectorielle ;
- raccordement entre modes de modulation et aux changements de fréquence porteur en mode synchrone avec compensation des "temps morts" ;
- compensation des "temps morts".

21 a) Il suffit d'implanter une consigne flux (ici en rampe),
b) il en résulte une consigne d'excitation,
c) bien suivie par la mesure,
d) il a fallu, bien sûr, une tension statique,
e) qui de fait a produit un courant statique continu.
22 a) Consigne d'excitation.
b) Mesure du courant d'excitation.
c) Demande de courant actif (couple).
d) Courant actif mesuré.
e) Courant phase machine.
f) Fréquence rotative.

23 Établissement du couple : moteur calé \((\frac{dL}{dt} = 50 L_0/s)\).
Courbe du haut : référence et mesure de \(L_c\).
Courbe du bas : signal de sortie du couplemètre.
Échelle horizontale 0,5 s/c.

24 Détail de la figure 23 (20 ms/c).

Au niveau de la commande elle-même, des études se poursuivent dans le but d'améliorer la réponse dynamique. La stratégie consiste à utiliser des estimateurs ou observateurs d'état pour les grandeurs non mesurables, des régulations prédictives et optimales avec identification en temps réel de certains paramètres éminemment évolutifs (résistances statiques et rotoriques en particulier), auto-adaptabilité à la machine et/ou recherche de la robustesse maximale des différents algorithmes. L'intérêt de ces études est évident lorsqu'on considère les avantages que présente l'utilisation de moteurs asynchrones en lieu et place des moteurs à courant continu dont les collecteurs mécaniques donnent, toujours aussi fréquemment, des soucis aigus aux exploitants. Cependant, les procédés industriels sont le plus souvent exigeants en performances dynamiques, même en surcharge transitoire dans les domaines de flux réduit (cas de pratiquement tous les laminoirs, par exemple).

L'enjeu est donc passionnant, et sur le plan théorique, et sur le plan pratique, car l'évolution des performances des composants de micro-électronique est telle que l'implémentation pour l'exécution en temps réel des algorithmes les plus évolutifs sera manifestement possible et même aisée (utilisation de langages de programmation évolutifs).

Outre la commande proprement dite qui assure la maîtrise du couple du moteur, les techniques numériques modernes permettent de réaliser des associations convertisseur-moteur « intelligentes » : si le mot est un peu fort, disons tout au
Imaginons un équipement industriel, comme une machine à papier, ou encore un lamination; le produit est en prise dans un nombre important de sections motorisées individuellement. La cohérence des vitesses relatives maintient la traction sur le produit et toute anomalie de fonctionnement nécessite une coordination des actions. En cas de dysfonctionnement, il faut pouvoir analyser les causes des défaillances et retrouver la cause originelle, d'où un volume important de données à traiter et à mémoriser.

Il est donc nécessaire de constituer des bases de données, réparties notamment dans les équipements de commande-régulation. Ces informations correspondent aux valeurs mesurées ou estimées (observateurs), valeurs des références, résultats de calcul, états logiques etc.

Ramenées au niveau de l'informatique temps réel, elles sont contenues dans les mémoires de travail accessibles au micro-processeur. Ce dernier peut donc les transférer dans ses zones de mémoire réservées. Il peut constituer ainsi des listes tournantes de valeurs et d'événements datés, l'élément le plus récent écrasant le plus ancien.

Sur ordre extérieur, ces grandeurs ou événements peuvent être envoyés sur un organe de visualisation, local ou à distance, pour le réglage optimal de la production, la surveillance ou le dépannage, la télé-surveillance ou le télé-dépannage.

Conclusion

Les techniques modernes d'entraînement reposent sur une utilisation de plus en plus large du moteur asynchrone.

Simple et robuste, ce moteur ne pas facile à contrôler. Et c'est bien normal, pour une machine aussi géniale. Rendons hommage à Tesla et Ferraris.

Si la mise en équation des modes de fonctionnement de ce moteur est faite depuis longtemps, seuls les apports les plus récents de l'électronique de puissance et de l'électronique de commande permettent d'envisager de tirer d'un moteur asynchrone tout le parti qu'on sait extraire depuis longtemps du moteur à courant continu. Alors, vive la micro-électronique et vive la micro-électronique pour l'utilisation intelligente du fer et du cuivre !

Bibliographie

BULHME (H.) : "Electronique de régulation et de commande", Dunod.

SANTHE (J.L.) : "Systèmes à vitesse variable", Fascicule 1, cours manuscrit 358/1 Supélec (9e année - SE).

GODFROI D. (H.), MATUSZAK (D.), MIRZalian (A.) : "Algorithmes optimisés pour MLI et contrôle vectoriel de moteurs asynchrones de moyenne et grande puissance". Journée d'étude S3E du 28 novembre 1990 à Lille.