Fisher Information Geometry of The Barycenter Map

Mitsuhiro Itoh (Institute of Mathematics, University of Tsukuba, Japan)*1
Hiroyasu Satoh (Nippon Institute of Technology, Japan)*2

1. Introduction

We would like to report Fisher information geometry of the barycenter map associated with normalized Busemann function \(B\) of an Hadamard manifold \(X\), simply connected non-positively curved manifold and to present an application to Riemannian geometry of \(X\) from viewpoint of Fisher information geometry. This report is an improvement of [ItSat’13] together with a fine investigation of the barycenter map.

2. The barycenter map

Let \(\mathbb{P}(\mu) = \mathcal{P}(\partial X, d\theta)\) be a probability measure on the ideal boundary \(\partial X\) of \(X\). A point \(x \in X\) is called a barycenter of \(\mu\), when \(x\) is a critical point of the \(\mu\)-average Busemann function on \(X\);

\[B_{\mu}(y) = \int_{\partial X} B_{\theta}(y) d\mu(\theta), \ y \in X.\]

Denote by \(\mathcal{P}^+ = \mathcal{P}^+(\partial X, d\theta)\) the space of probability measures \(\mu = f(\theta) d\theta\) defined on \(\partial X\) satisfying \(\mu \ll d\theta\) and with continuous density \(f = f(\theta) > 0\). A point \(x \in X\) is a barycenter of a measure \(\mu\) if and only if the \(\mu\)-average one form \(dB_{\mu}(\cdot) = \int_{\partial X} dB_{\theta}(\cdot) d\mu(\theta)\) vanishes at \(x\).

We follow the idea given by [DoEa], [BeCoGa’95].

Theorem 2.1 ([ItSat’14-2]). The function \(B\) admits for any \(\mu \in \mathcal{P}^+\) a barycenter, provided (i) \(X\) satisfies the axiom of visibility and (ii) \(B_{\theta}(x)\) is continuous in \(\theta \in \partial X\).

\(X\) is said to satisfy the axiom of visibility, when any two ideal points \(\theta_1, \theta_2\) of \(\partial X\), \(\theta_1 \neq \theta_2\), can be joined by a geodesic in \(X\) (see [EO]). In [BeCoGa’95] the existence theorem is verified under the conditions that (i) \(B_{\theta}\) satisfies \(\lim_{x \to \theta_1} B_{\theta}(x) = +\infty\), when \(\theta_1 \neq \theta\) and (ii) \(B_{\theta}(\cdot)\) is continuous with respect to \(\theta\). The condition (i) can be replaced by the axiom of visibility (refer to [BGS]) to obtain Theorem 2.1.

For the uniqueness we have

Theorem 2.2 ([ItSat’14-2]). Assume (i) and (ii) in Theorem 2.1. If, for some \(\mu_0 \in \mathcal{P}^+\) the \(\mu_0\)-average Hessian

\[(\nabla d \mathbb{B}_{\mu_0})_x(\cdot, \cdot) = \int_{\theta \in \partial X} (\nabla d B_{\theta})_x(\cdot, \cdot) d\mu_0(\theta)\]

is positive definite on \(T_x X\) at any \(x \in X\), then the existence of barycenter is unique for any \(\mu \in \mathcal{P}^+\).

So, we obtain a map, called the barycenter map

\[\text{bar} : \mathcal{P}^+ = \mathcal{P}^+(\partial X, d\theta) \to X, \mu \mapsto x,\]

where \(x\) is a barycenter of \(\mu\).

Notice that the differentiability of \(\mathbb{B}_\mu\) is guaranteed when the Hessian of \(B_{\theta}\) is uniformly bounded with respect to \(\theta\).

*1 e-mail: itohm@math.tsukuba.ac.jp
*2 e-mail: hiroyasu@nit.ac.jp
§3. A fibre space structure of \mathcal{P}^+ over X and Fisher information metric

It is easily shown that the map $\bar{\mu}$ is regular at any μ, that is, the differential map

$$d\bar{\mu}: T_\mu \mathcal{P}^+ \to T_y X$$

is surjective (see [BeCoGa’96]). Moreover the map $\bar{\mu}$ is itself surjective and hence it yields a fibre space projection with fibre $\bar{\mu}^{-1}(x)$ over $x \in X$,

$$\mathcal{P}^+ (\partial X, d\theta) \downarrow \bar{\mu} \downarrow X$$

provided X carries Busemann-Poisson kernel $P(x, \theta) d\theta = \exp\{-qB_\theta(x)\}$, the fundamental solution of Dirichlet problem at the boundary ∂X, namely, Poisson kernel represented by $B_\theta(x)$ in an exponential form ($q = q(X) > 0$ is the volume entropy of X). An Hadamard manifold admitting Busemann-Poisson kernel turns out to be asymptotically harmonic ([Led], [ItSat’11]), since ΔB_θ is constant for any θ.

The tangent space $T_\mu \bar{\mu}^{-1}(x)$ of $\bar{\mu}^{-1}(x)$ is characterized as

$$\{ \tau \in T_\mu \mathcal{P}^+ | \int_{\theta \in \partial X} (dB_\theta)_x(U)d\tau(\theta) = 0, \forall U \in T_x X \}$$

so one gets

Proposition 3.1. $\tau \in T_\mu \mathcal{P}^+$ belongs to $T_\mu \bar{\mu}^{-1}(x)$ if and only if

$$G_\mu (\tau, N_\mu(U)) = 0, \forall U \in T_x X$$

where G_μ is the Fisher information metric of \mathcal{P}^+ at μ and $N_\mu : T_x X \to T_\mu \mathcal{P}^+$ is a linear map defined by

$$N_\mu : T_x X \to T_\mu \mathcal{P}^+ \quad U \mapsto (dB_\theta)_x(U)d\mu(\theta).$$

From this we have

Proposition 3.2. At any $\mu \in \mathcal{P}^+$ the tangent space $T_\mu \mathcal{P}^+$ admits an orthogonal direct sum decomposition into the vertical and horizontal subspaces as

$$T_\mu \mathcal{P}^+ = T_\mu \bar{\mu}^{-1}(x) \oplus \text{Im}N_\mu, \ x = \bar{\mu}(\mu),$$

with $\text{dim} \text{Im}N_\mu = \text{dim} X$.

Definition 3.1 ([AN], [Fr] and [ItSat’11]). A positive definite inner product G_μ on the tangent space $T_\mu \mathcal{P}^+$ is defined by

$$G_\mu (\tau, \tau_1) = \int_{\theta \in \partial X} \frac{d\tau}{d\mu}(\theta)\frac{d\tau_1}{d\mu}(\theta)d\mu(\theta), \ \tau, \tau_1 \in T_\mu \mathcal{P}^+.$$

The collection $\{G_\mu | \mu \in \mathcal{P}^+\}$ provides a Riemannian metric on \mathcal{P}^+, called Fisher information metric G.
As the G is viewed as a Riemannian metric on an infinite dimensional manifold \mathcal{P}^+, the Levi-Civita connection ∇ is given (see p.276, [Fr])

$$\nabla_{\tau_1 \tau} = -\frac{1}{2} \left(\frac{d\tau}{d\mu}(\theta) \frac{d\tau_1}{d\mu}(\theta) - \int \frac{d\tau}{d\mu}(\theta) \frac{d\tau_1}{d\mu}(\theta) d\mu(\theta) \right) \mu,$$

(3)

at a point $\mu \in \mathcal{P}^+$ for constant vector fields τ, τ_1 on \mathcal{P}^+.

The space \mathcal{P}^+ with the metric G has then constant sectional curvature $\frac{1}{4}$ (refer to Satz 2, §1, [Fr]). By using the formula (3) we have

Theorem 3.3. Let $\gamma(t)$ be a geodesic in \mathcal{P}^+ of $\gamma(0) = \mu$ and $\gamma'(0) = \tau \in T_\mu \mathcal{P}^+$, a unit tangent vector. Then $\gamma(t)$ is described as

$$\gamma(t) = \left\{ \cos^2 \frac{t}{2} + 2 \cos \frac{t}{2} \sin \frac{t}{2} \frac{d\tau}{d\mu}(\theta) + \sin^2 \frac{t}{2} \left(\frac{d\tau}{d\mu}(\theta) \right)^2 \right\} d\mu(\theta)$$

(4)

Note that the geodesic lies inside of \mathcal{P}^+ as far as the density is positive with respect to $\theta \in \partial X$.

Corollary 3.4. Every geodesic in \mathcal{P}^+ is periodic of period 2π. The length ℓ of a geodesic segment joining two measures μ and μ_1 of \mathcal{P}^+ is given by

$$\cos \frac{\ell}{2} \leq \int_{\partial X} \sqrt{\frac{d\mu_1}{d\mu}(\theta) d\mu(\theta)} = \int_{\partial X} \sqrt{\frac{d\mu}{d\mu_1}(\theta) d\mu_1(\theta)}$$

(5)

and equality “$=$” in (5) holds provided at least $\cos(\frac{\ell}{2}) + \sin(\frac{\ell}{2}) \frac{d\tau}{d\mu}(\theta) > 0$ for any θ.

For these see also p. 279, [Fr]. The integration in RHS of (5) is the f-divergence $D_f(\mu||\mu_1) = \int f(\frac{d\mu_1}{d\mu}) d\mu$, $f(u) = \sqrt{u}$ in statistical models (refer to p. 56, [AN]).

The formula (4), an improvement of the formula given by T. Friedrich (refer to p.279, [Fr]), can then assert

Corollary 3.5. Let $\gamma(t) = \exp_{\mu} t \tau$ be a geodesic of $\gamma(0) = \mu$ and $\gamma'(0) = \tau$. Then γ is entirely contained in the fibre $\text{bar}^{-1}(x)$ over $x = \text{bar}(\mu)$ if and only if τ satisfies at μ

$$G_\mu(\nabla_{\tau} \tau, N_\mu(U)) = 0, \forall U \in T_\mu X,$$

(6)

The condition (6) implies that the tangent vector τ is a totally geodesic vector with respect to the second fundamental form H, i.e., $H(\tau, \tau) = 0$ at μ, since the image $\text{Im} N_\mu$ of the linear map N_μ distributes a normal bundle of $\text{bar}^{-1}(x)$ at any measure. Here, $H_\mu(\tau, \tau_1) := (\nabla_{\tau} \tau_1)_{\perp}$ at μ.

Example 3.1. Let o be the base point for ∂X, dim $X \geq 2$ such that $\partial X \cong S_{\theta} X$ and $\text{bar}(\mu) = o$ for the canonical measure $\mu = d\theta \in \mathcal{P}^+$. Identify $(d\theta_o)$, with $-\sum, \theta^i e_i, \theta^i \in \mathbb{R}$, with respect to an orthonormal basis $\{e_i\}$ of $T_o X$. Define $\tau = \frac{1}{\sqrt{c}} \theta^j \partial^j d\theta$, $i \neq j$ a vector tangent to $\mathcal{P}^+(c$ is a constant normalizing τ as a unit). Then $\tau \in T_\mu \text{bar}^{-1}(o)$ is seen and $\gamma(t) = \exp_{\mu} t \tau$ is a geodesic which is, from Corollary 3.5, contained in $\text{bar}^{-1}(o)$ at least for t, provided the density function is positive. In fact, the τ satisfies (6).
§4. Barycentrically associated maps and isometries of X

A Riemannian isometry φ of X transforms every geodesic into a geodesic and hence induces naturally a map $\hat{\varphi} : \partial X \to \partial X$, a homeomorphism with respect to the cone topology. Further the normalized Busemann function admits a cocycle formula ([GJT]);

$$B_\theta(\varphi x) = B_{\hat{\varphi}^{-1}\theta}(x) + B_\theta(\varphi o), \forall (x, \theta) \in X \times \partial X$$ (7)

(o is the normalization point of B_θ).

Proposition 4.1 (Equivariant action formula).

\[\text{bar} \circ \hat{\varphi} = \varphi \circ \text{bar}, \quad \text{namely} \]

\[\text{bar}(\hat{\varphi}_* \mu) = \varphi(\text{bar}(\mu)) \quad \forall \mu \in \mathcal{P}^+, \]

where $\Phi_* : \mathcal{P}^+ \to \mathcal{P}^+$ is the push-forward of a homeomorphism Φ of ∂X;

\[\int_{\theta \in \partial X} h(\theta) \, d[\Phi_* \mu](\theta) = \int_{\theta \in \partial X} (h \circ \Phi)(\theta) \, d\mu(\theta) \] (9)

for any function $h = h(\theta)$ on ∂X (see p.4, [V]).

So, we consider the situation converse of Proposition 4.1 as

Definition 4.1. Let $\Phi : \partial X \to \partial X$ be a homeomorphism of ∂X. Then, a map $\varphi : X \to X$ is called barycentrically associated to Φ, when φ satisfies the relation $\text{bar} \circ \Phi_* = \varphi \circ \text{bar}$ in the diagram

\[\mathcal{P}^+(\partial X, d\theta) \xrightarrow{\Phi_*} \mathcal{P}^+(\partial X, d\theta) \]

\[\downarrow \text{bar} \quad \downarrow \text{bar} \]

\[X \xrightarrow{\varphi} X \] (10)

So an isometry φ is a map barycentrically associated to $\Phi = \hat{\varphi}$.

Let $\text{bar} : \mathcal{P}^+ \to X$ be the barycenter map. Then, with respect to a homeomorphism $\Phi : \partial X \to \partial X$ and a map $\varphi : X \to X$ we obtain the following ([ItSat’14],[ItSat’14-2])

Theorem 4.2. Assume that a pair (Φ, φ) with $\varphi \in C^1$ satisfies; (a) $\text{bar}(\Phi_* \mu) = \varphi(\text{bar}(\mu)), \forall \mu \in \mathcal{P}^+$, and (b) $\Theta(\varphi(x)) = \Phi_* (\Theta(x)), \forall x \in X$;

\[\mathcal{P}^+(\partial X, d\theta) \xrightarrow{\Phi_*} \mathcal{P}^+(\partial X, d\theta) \]

\[\uparrow \Theta \quad \uparrow \Theta \]

\[X \xrightarrow{\varphi} X \] (11)

Then φ must be a Riemannian isometry of X.

Here, $\Theta : X \to \mathcal{P}^+ ; y \mapsto P(y, \theta)d\theta$ is a map associated with a Busemann-Poisson kernel $P(x, \theta) = \exp\{-q B_\theta(x)\}$.

Remark 4.1. If X admits a Busemann-Poisson kernel, then Θ gives a cross section of the fibre space $\mathcal{P}^+ \to X$, since $\text{bar}(\mu_x) = x$ for $\mu_x = P(x, \theta)d\theta$, and moreover every $\mu \in \mathcal{P}^+$ admits a unique barycenter from Theorem 2.2, since it holds

\[\int_{\partial X} (\nabla dB_\theta)_x(U, V) d\mu_x(\theta) = q \int_{\partial X} (dB_\theta)_x(U)(dB_\theta)_x(U) d\mu_x(\theta), \quad U, V \in T_x X \]
that is

\[(\nabla d B)_{x}(U, V) = q \ G_{\mu_x}(N_{\mu_x}(U), N_{\mu_x}(V))\]

\((q > 0 \text{ is the volume entropy of } X) \text{ and at any } y \in X\)

\[(\nabla d B)_{y}(U, U) \geq C(\nabla d B)_{x}(U, U)\]

for some constant \(C > 0\), depending on \(x, y\). From these the \(\mu_x\)-average Hessian \(\nabla d B\) turns out to be positive definite everywhere.

With respect to the conditions (a) and (b) of Theorem 4.2 we have

Theorem 4.3. Let \(X\) be an Hadamard manifold satisfying assumptions (i) and (ii) of Theorem 2.1 and admit a Busemann-Poisson kernel. Let \(\Phi : \partial X \to \partial X\) be a homeomorphism. If a map \(\varphi : X \to X\) is \(C^1\) with surjective differential \(d\varphi_x, \forall x \in X\), then (b) implies (a).

§5. **Damek-Ricci spaces and motivation**

A Damek-Ricci space is a solvable Lie group, an \(\mathbb{R}\)-extension of a generalized Heisenberg group and carries a left invariant Riemannian metric and further provides a space on which harmonic analysis is developed ([ADY],[DamR]). For precise definition and differential geometry of Damek-Ricci space refer to [BTV]. Damek-Ricci spaces are Hadamard manifolds whose typical examples are rank one symmetric spaces of non-compact type, complex hyperbolic, quaternionic hyperbolic and Cayley hyperbolic spaces as strictly negative curved ones, except for real hyperbolic spaces ([D],[L]). Any Damek-Ricci space satisfies the axiom of visibility and has \(\theta\)-continuous Busemann function (refer to [ItSat’10]) . Moreover, it admits a Busemann-Poisson kernel (see [ItSat’10]) so that it satisfies (i) and (ii) of Theorem 2.1. Most important implication of Damek-Ricci spaces is that they provides counterexample of Lichnerowicz conjecture of non-compact version (refer to [BTV]).

So, relating to this, our motivation is to characterize Damek-Ricci spaces from a viewpoint of geometry, since only a Lie group characterization of Damek-Ricci space is known from Heber’s theorem ([Heb]). A Damek-Ricci space turns out recently to be Gromov-hyperbolic, whereas it admits zero sectional curvature (see [ItSat’14-2] for this and refer to [CDP],[Bourd],[K] for the Gromov hyperbolicity).

Thus, we pose the following. Let \(X_o\) be a Damek-Ricci space and \(X\) an Hadamard manifold quasi-isometric to \(X_o\). Assume that \(X\) admits a Busemann-Poisson kernel. Then, is \(X\) isometric, or homothetic to \(X_o\) as a Riemannian manifold ? At least from this assumption we have that any Riemannian isometry of \(X_o\) induces a homeomorphism of \(\partial X\) of \(X\) (for the detail, see [ItSat’14-2]).

References

