Isometric Reeb Flow and Related Results on Hermitian Symmetric Spaces of Rank 2

Young Jin Suh

Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea
Ecole des Meines, Paris, France
Geometric Science of Information, GSI’13
28-30th, August, 2013
E-mail: yjsuh@knu.ac.kr

August 29, 2013
Contents

1 Introduction
 • Homogeneous Hypersurfaces
 • Isometric Reeb Flow

2 Hyperbolic Grassmannians
 • Hypersurfaces in $SU_{2,m}/S(U_2 U_m)$
 • Isometric Reeb Flow

3 Complex Quadrics
 • Real hypersurfaces in Q^{2k}
 • Tubes around the totally geodesic $\mathbb{C}P^k \subset Q^{2k}$
 • Proof of Main Theorem
Contents

1 Introduction
 - Homogeneous Hypersurfaces
 - Isometric Reeb Flow

2 Hyperbolic Grassmannians
 - Hypersurfaces in $SU_{2,m} / S(U_2 U_m)$
 - Isometric Reeb Flow

3 Complex Quadrics
 - Real hypersurfaces in Q^{2k}
 - Tubes around the totally geodesic $CP^k \subset Q^{2k}$
 - Proof of Main Theorem
1 Introduction
 - Homogeneous Hypersurfaces
 - Isometric Reeb Flow

2 Hyperbolic Grassmannians
 - Hypersurfaces in $SU_{2,m}/S(U_2 U_m)$
 - Isometric Reeb Flow

3 Complex Quadrics
 - Real hypersurfaces in Q^{2k}
 - Tubes around the totally geodesic $\mathbb{CP}^k \subset Q^{2k}$
 - Proof of Main Theorem
1 Introduction
- Homogeneous Hypersurfaces
- Isometric Reeb Flow

2 Hyperbolic Grassmannians
- Hypersurfaces in $SU_{2,m}/S(U_2 U_m)$
- Isometric Reeb Flow

3 Complex Quadrics
- Real hypersurfaces in Q^{2k}
- Tubes around the totally geodesic $CP^k \subset Q^{2k}$
- Proof of Main Theorem
Hereafter let us note that HSSP means Hermitian Symmetric Space.

- **HSSP** of compact type with rank 1: $\mathbb{C}P^m$, $\mathbb{Q}P^m$
- **HSSP** of noncompact type with rank 1: $\mathbb{C}H^m$, $\mathbb{Q}H^m$.
- **HSSP** of compact type with rank 2: $SU(2 + q)/S(U(2) \times U(q))$, Q^m, $SO(8)/U(4)$, $Sp(2)/U(2)$ and $(\varepsilon_6(-78), \mathbb{G} \mathbb{O}(10) + \mathbb{R})$
- **HSSP** of compact type with rank 2: $SU(2, q)/S(U(2) \times U(q))$, Q^*_m, $SO^*(8)/U(4)$, $Sp(2, \mathbb{R})/U(2)$ and $(\varepsilon_6(2), \mathbb{G} \mathbb{O}(10) + \mathbb{R})$ (See Helgason [6], [7]).
Hereafter let us note that HSSP means Hermitian Symmetric Space.

- **HSSP** of compact type with rank 1: \(\mathbb{C}P^m, \mathbb{Q}P^m \)
- **HSSP** of noncompact type with rank 1: \(\mathbb{C}H^m, \mathbb{Q}H^m \).
- **HSSP** of compact type with rank 2:
 \(SU(2+q)/S(U(2) \times U(q)), Q^m, SO(8)/U(4), Sp(2)/U(2) \) and \((\varepsilon_6(-78), \mathbb{G}2(10) + \mathbb{R}) \)
- **HSSP** of compact type with rank 2:
 \(SU(2, q)/S(U(2) \times U(q)), Q^*_m, SO^*(8)/U(4), Sp(2, \mathbb{R})/U(2) \) and \((\varepsilon_6(2), \mathbb{G}2(10) + \mathbb{R}) \) (See Helgason [6], [7]).
Hereafter let us note that HSSP means Hermitian Symmetric Space.

- **HSSP** of compact type with rank 1: $\mathbb{C}P^m$, $\mathbb{Q}P^m$
- **HSSP** of noncompact type with rank 1: $\mathbb{C}H^m$, $\mathbb{Q}H^m$.
- **HSSP** of compact type with rank 2:
 - $SU(2 + q)/S(U(2) \times U(q))$, Q^m, $SO(8)/U(4)$, $Sp(2)/U(2)$ and $(\varepsilon_{6(-78)}, SO(10) + \mathbb{R})$
- **HSSP** of compact type with rank 2:
 - $SU(2, q)/S(U(2) \times U(q))$, Q^*m, $SO^*(8)/U(4)$, $Sp(2, \mathbb{R})/U(2)$ and $(\varepsilon_{6(2)}, SO(10) + \mathbb{R})$ (See Helgason [6], [7]).
Hereafter let us note that HSSP means Hermitian Symmetric Space.

- HSSP of compact type with rank 1: $\mathbb{C}P^m$, $\mathbb{Q}P^m$
- HSSP of noncompact type with rank 1: $\mathbb{C}H^m$, $\mathbb{Q}H^m$.
- HSSP of compact type with rank 2:
 $SU(2 + q)/S(U(2) \times U(q))$, Q^m, $SO(8)/U(4)$, $Sp(2)/U(2)$ and $(\mathfrak{e}_6(-78), \mathfrak{SO}(10) + \mathbb{R})$
- HSSP of compact type with rank 2:
 $SU(2, q)/S(U(2) \times U(q))$, Q^*m, $SO^*(8)/U(4)$, $Sp(2, \mathbb{R})/U(2)$ and $(\mathfrak{e}_6(2), \mathfrak{SO}(10) + \mathbb{R})$ (See Helgason [6], [7]).
Let M be a hypersurfaces in a Hermitian Symmetric Space \tilde{M} with Kaehler structure J.

$AX = -\tilde{\nabla}_X N$: Weingarten formula

Here A: the shape operator of M in \tilde{M}.

$\xi = -JN$: the Reeb vector field.

$JX = \phi X + \eta(X)N, \nabla_X \xi = \phi AX$

for any vector field $X \in \Gamma(M)$.

Then (ϕ, ξ, η, g): almost contact structure on a hypersurface M.
A hypersurface M: Isometric Reeb Flow $\iff \mathcal{L}_\xi g = 0 \iff g(d\phi_t X, d\phi_t Y) = g(X, Y)$ for any $X, Y \in \Gamma(M)$, where ϕ_t denotes a one parameter group, which is said to be an isometric Reeb flow of M, defined by

$$\frac{d\phi_t}{dt} = \xi(\phi_t(p)), \quad \phi_0(p) = p, \dot{\phi}_0(p) = \xi(p).$$

Note)

$$\mathcal{L}_\xi g = 0 \iff \nabla_j \xi_i + \nabla_i \xi_j = 0, \nabla \xi: \text{skew-symmetric} \iff g(\nabla X \xi, Y) + g(\nabla Y \xi, X) = 0 \iff g((\phi A - A\phi) X, Y) = 0 \text{ for any } X, Y \in \Gamma(M).$$
Define)

A hypersurface M: Isometric Reeb Flow $\iff \mathcal{L}_\xi g = 0 \iff g(\frac{d}{dt}\phi_t X , \frac{d}{dt}\phi_t Y) = g(X, Y)$ for any $X, Y \in \Gamma(M)$, where ϕ_t denotes a one parameter group, which is said to be an isometric Reeb flow of M, defined by

$$\frac{d\phi_t}{dt} = \xi(\phi_t(p)), \quad \phi_0(p) = p, \quad \dot{\phi}_0(p) = \xi(p).$$

Note)

$\mathcal{L}_\xi g = 0 \iff \nabla_j \xi_i + \nabla_i \xi_j = 0, \quad \nabla \xi$: skew-symmetric $\iff g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X) = 0 \iff g((\phi A - A\phi)X, Y) = 0$ for any $X, Y \in \Gamma(M)$.

Isometric Reeb Flow on Hermitian Symmetric Spaces
In the future homogeneous hypersurfaces in HSSP satisfying certain geometric conditions might be solved completely as follows:

Problem 1
Classify all of homogeneous hypersurfaces in HSSP.

In this talk let us consider hypersurfaces with isometric Reeb flow in *Hermitian Symmetric Spaces* as follows:

Problem 2
If M is a complete hypersurface in HSSP \tilde{M} with isometric Reeb flow, then M becomes homogeneous?
In the future homogeneous hypersurfaces in HSSP satisfying certain geometric conditions might be solved completely as follows:

Problem 1
Classify all of homogeneous hypersurfaces in HSSP.

In this talk let us consider hypersurfaces with isometric Reeb flow in *Hermitian Symmetric Spaces* as follows:

Problem 2
If M is a complete hypersurface in HSSP \tilde{M} with isometric Reeb flow, then M becomes homogeneous?
1 Introduction
 - Homogeneous Hypersurfaces
 - Isometric Reeb Flow

2 Hyperbolic Grassmannians
 - Hypersurfaces in $SU_{2,m}/S(U_2 U_m)$
 - Isometric Reeb Flow

3 Complex Quadrics
 - Real hypersurfaces in Q^{2k}
 - Tubes around the totally geodesic $\mathbb{C}P^k \subset Q^{2k}$
 - Proof of Main Theorem
Note 1) In $\mathbb{C}P^m$, $\mathbb{C}H^m$ and $\mathbb{Q}P^m$ with isometric Reeb flow (See Okumura 1976, Montil and Romero 1986, Perez and Martinez 1986).

Note 2) In $G_2(\mathbb{C}^{m+2})$, $G_2^*(\mathbb{C}^{m+2})$ and complex quadric $Q^m = SO(m+2)/SO(2)SO(m)$ with isometric Reeb flow (See Berndt and Suh, 2002 and 2012, Suh, 2013, Berndt and Suh, 2013).

Note 3) In near future, in noncompact complex quadric $Q^{m*} = SO(2, m)/SO(2)SO(m)$ with isometric Reeb flow will be classified.
Note 1) In $\mathbb{C}P^m$, \mathbb{CH}^m and \mathbb{QP}^m with isometric Reeb flow (See Okumura 1976, Montil and Romero 1986, Perez and Martinez 1986).

Note 2) In $G_2(\mathbb{C}^{m+2})$, $G_2^*(\mathbb{C}^{m+2})$ and complex quadric $Q^m = SO(m + 2)/SO(2)SO(m)$ with isometric Reeb flow (See Berndt and Suh, 2002 and 2012, Suh, 2013, Berndt and Suh, 2013).

Note 3) In near future, in noncompact complex quadric $Q^{m*} = SO(2, m)/SO(2)SO(m)$ with isometric Reeb flow will be classified.
Note 1) In $\mathbb{C}P^m$, $\mathbb{C}H^m$ and $\mathbb{Q}P^m$ with isometric Reeb flow (See Okumura 1976, Montil and Romero 1986, Perez and Martinez 1986).

Note 2) In $G_2(\mathbb{C}^{m+2})$, $G_2^*(\mathbb{C}^{m+2})$ and complex quadric $Q^m = SO(m+2)/SO(2)SO(m)$ with isometric Reeb flow (See Berndt and Suh, 2002 and 2012, Suh, 2013, Berndt and Suh, 2013).

Note 3) In near future, in noncompact complex quadric $Q^{m*} = SO(2, m)/SO(2)SO(m)$ with isometric Reeb flow will be classified.
In \mathbb{CP}^m: Okumura

M: an open part of a tube over \mathbb{CP}^k, $0 \leq k \leq m - 1$

$H = S(U(k + 1) \cdot U(m - k)) \hookrightarrow SU(m + 1)$

: Isometry group acting cohomogeneity one

$\mathbb{CP}^k = SU(k + 1)/S(U(k) \cdot U(1))$
Montiel and Romero classified hypersurfaces in $\mathbb{C}H^{m}$ with isometric Reeb flow as follows:

Theorem 1.1

(Montiel and Romero 1986) Let M be a real hypersurfaces in $\mathbb{C}H^{m}$ with **isometric Reeb flow**. Then we have the following

- (A) M is an open part of a tube around a totally geodesic $\mathbb{C}H^{k}$ in $\mathbb{C}H^{m}$,
- (C) geodesic hypersphere,
- (D) horosphere.
Montiel and Romero classified hypersurfaces in $\mathbb{C}H^m$ with isometric Reeb flow as follows:

Theorem 1.1

(Montiel and Romero 1986) Let M be a real hypersurfaces in $\mathbb{C}H^m$ with isometric Reeb flow. Then we have the following:

- (A) M is an open part of a tube around a totally geodesic $\mathbb{C}H^k$ in $\mathbb{C}H^m$,
- (C) geodesic hypersphere,
- (D) horosphere.
Montiel and Romero classified hypersurfaces in $\mathbb{C}H^m$ with isometric Reeb flow as follows:

Theorem 1.1

(Montiel and Romero 1986) Let M be a real hypersurfaces in $\mathbb{C}H^m$ with isometric Reeb flow. Then we have the following

- (A) M is an open part of a tube around a totally geodesic $\mathbb{C}H^k$ in $\mathbb{C}H^m$,
- (C) geodesic hypersphere,
- (D) horosphere.
Montiel and Romero classified hypersurfaces in $\mathbb{C}H^m$ with isometric Reeb flow as follows:

Theorem 1.1

(Montiel and Romero 1986) Let M be a real hypersurfaces in $\mathbb{C}H^m$ with isometric Reeb flow. Then we have the following

- (A) M is an open part of a tube around a totally geodesic $\mathbb{C}H^k$ in $\mathbb{C}H^m$,
- (C) geodesic hypersphere,
- (D) horosphere.
Grassmannians

\[G_2(\mathbb{C}^{m+1}) = SU(m+1)/S(U(m-1) \cdot U(2)) \]

\(M \) : an open part of a tube over \(G_2(\mathbb{C}^{m+1}) \) or over \(\mathbb{QP}^n \), \(m = 2n \)

\(H = S(U(m+1) \cdot U(1)) \hookrightarrow SU(m+2) \)

or \(H = SP(n+1) \hookrightarrow SU(m+2) \)

\[\mathbb{QP}^n = SP(n+1)/SP(n) \cdot SP(1) \]
When the maximal complex subbundle \mathcal{C} (resp. quaternionic subbundle) of M in $G_2(\mathbb{C}^{m+2})$ is invariant, that is $A\mathcal{C} \subset \mathcal{C}$ (resp. $A\mathcal{Q} \subset \mathcal{Q}$), we say M is Hopf (resp. curvature adapted).

Berndt and Suh (Monat, 1999) have classified real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ as follows:

Theorem 1.2

A real hypersurface of $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, is Hopf and curvature adapted if and only if it is congruent to

- (A) a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$,
- (B) a tube over a totally geodesic totally real $\mathbb{Q}P^n$, $m = 2n$, in $G_2(\mathbb{C}^{m+2})$.

Y.J. Suh

Isometric Reeb Flow on Hermitian Symmetric Spaces
When the maximal complex subbundle \mathcal{C} (resp. quaternionic subbundle) of M in $G_2(\mathbb{C}^{m+2})$ is invariant, that is $AC \subset \mathcal{C}$ (resp. $AQ \subset \mathcal{Q}$), we say M is Hopf (resp. curvature adapted).

Berndt and Suh (Monat, 1999) have classified real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ as follows:

Theorem 1.2

A real hypersurface of $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, is Hopf and curvature adapted if and only if it is congruent to

- (A) a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$,
- (B) a tube over a totally geodesic totally real $\mathbb{Q}P^n$, $m = 2n$, in $G_2(\mathbb{C}^{m+2})$.
When the maximal complex subbundle C (resp. quaternionic subbundle) of M in $G_2(\mathbb{C}^{m+2})$ is invariant, that is $AC \subset C$ (resp. $AQ \subset Q$), we say M is Hopf (resp. curvature adapted).

Berndt and Suh (Monat, 1999) have classified real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ as follows:

Theorem 1.2

A real hypersurface of $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, is Hopf and curvature adapted if and only if it is congruent to

- (A) a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$,
- (B) a tube over a totally geodesic totally real $\mathbb{Q}P^n$, $m = 2n$, in $G_2(\mathbb{C}^{m+2})$.
Berndt and Suh (Monat. 2002) have given a classification of hypersurfaces in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$ with isometric Reeb flow as follows:

Theorem 1.3

Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with isometric Reeb flow. Then M is locally congruent to

- (A) a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$. The two singular orbits are totally geodesically embedded $\mathbb{C}P^m$ and $G_2(\mathbb{C}^{m+1})$.
Berndt and Suh (Monat. 2002) have given a classification of hypersurfaces in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \) with isometric Reeb flow as follows:

Theorem 1.3

Let \(M \) be a real hypersurface in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \), with isometric Reeb flow. Then \(M \) is locally congruent to

- (A) a tube over a totally geodesic \(G_2(\mathbb{C}^{m+1}) \) in \(G_2(\mathbb{C}^{m+2}) \). The two singular orbits are totally geodesically embedded \(\mathbb{C}P^m \) and \(G_2(\mathbb{C}^{m+1}) \),
1 Introduction
- Homogeneous Hypersurfaces
- Isometric Reeb Flow

2 Hyperbolic Grassmannians
- Hypersurfaces in $SU_{2,m}/S(U_2U_m)$
- Isometric Reeb Flow

3 Complex Quadrics
- Real hypersurfaces in Q^{2k}
- Tubes around the totally geodesic $CP^k \subset Q^{2k}$
- Proof of Main Theorem
The Riemannian symmetric space $SU(2, m)/S(U(2) \times U(m))$ is a connected, simply connected, irreducible Riemannian symmetric space of noncompact type with rank 2.

Let $G = SU(2, m)$ and $K = S(U(2) \times U(m))$, and denote by \mathfrak{g} and \mathfrak{h} the corresponding Lie algebra. Let B denotes the Cartan Killing form of \mathfrak{g} and by \mathfrak{p} the orthogonal complement of \mathfrak{h} in \mathfrak{g} with respect to B.
The decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of $\mathfrak{g} = \mathfrak{su}(2, m)$. The Cartan involution $\theta \in \text{Aut}(\mathfrak{g})$ on $\mathfrak{su}(2, m)$ is given by $\theta(A) = l_{2,m} A l_{2,m}$ for $A \in \mathfrak{su}(2, m)$, where

$$l_{2,m} = \begin{pmatrix} -l_2 & 0_{2,m} \\ 0_{m,2} & l_m \end{pmatrix}$$

Then $<X, Y> = -B(X, \theta Y)$: a positive definite $\text{Ad}(K)$-invariant on \mathfrak{g}. Its restriction to \mathfrak{p}: a Riemannian metric g, where g: the Killing metric on $SU(2, m)/S(U(2) \times U(m))$.
The Killing Cartan form $B(X,Y)$ of $\mathfrak{sl}(n,C)$ is given by $B(X,Y) = 2nTrXY$ for any $X,Y \in \mathfrak{sl}(n,C)$.

In $\mathfrak{su}(m+2) = \{X \in M(m+2,C)|X^* + X = 0, TrX = 0\}$, $B(X,Y)$ is negative definite, because $B(X,X) = -2nTrXX^* \leq 0$. So $\langle X, Y \rangle = -B(X,Y)$.

In $\mathfrak{su}(2,m) = \{X \in M(m+2,C)|X^*I_{2,m} + I_{2,m}X = 0, TrX = 0\}$, the product $\langle X, Y \rangle = -B(X,\theta Y), \theta^2 = I$, is positive definite, because

$$\langle X, X \rangle = -2nTrX\theta X = -2nTrXI_{2,m}XI_{2,m}$$
$$= 2nTrXX^*I_{2,m}^2 = 2nTrXX^* \geq 0.$$
Killing Cartan forms related to $\mathfrak{sl}(n, C)$

The Killing Cartan form $B(X, Y)$ of $\mathfrak{sl}(n, C)$ is given by $B(X, Y) = 2n \text{Tr}XY$ for any $X, Y \in \mathfrak{sl}(n, C)$.

In $\mathfrak{su}(m + 2) = \{X \in M(m + 2, C) | X^* + X = 0, \text{Tr}X = 0\}$, $B(X, Y)$ is negative definite, because $B(X, X) = -2n \text{Tr}XX^* \leq 0$. So $\langle X, Y \rangle = -B(X, Y)$.

In $\mathfrak{su}(2, m) = \{X \in M(m + 2, C) | X^* I_{2,m} + I_{2,m} X = 0, \text{Tr}X = 0\}$, the product $\langle X, Y \rangle = -B(X, \theta Y)$, $\theta^2 = I$, is positive definite, because

$$\langle X, X \rangle = -2n \text{Tr}X \theta X = -2n \text{Tr}X I_{2,m} X I_{2,m}$$
$$= 2n \text{Tr}XX^* I_{2,m}^2 = 2n \text{Tr}XX^* \geq 0.$$
Killing Cartan forms related to $\mathfrak{sl}(n, C)$

- The Killing Cartan form $B(X, Y)$ of $\mathfrak{sl}(n, C)$ is given by $B(X, Y) = 2n \text{Tr}XY$ for any $X, Y \in \mathfrak{sl}(n, C)$.

- In $\mathfrak{su}(m+2) = \{ X \in M(m+2, C) | X^* + X = 0, \text{Tr}X = 0 \}$, $B(X, Y)$ is negative definite, because $B(X, X) = -2n \text{Tr}XX^* \leq 0$. So $\langle X, Y \rangle = -B(X, Y)$.

- In $\mathfrak{su}(2, m) = \{ X \in M(m+2, C) | X^* I_{2,m} + I_{2,m} X = 0, \text{Tr}X = 0 \}$, the product $\langle X, Y \rangle = -B(X, \theta Y)$, $\theta^2 = I$, is positive definite, because

$$
\langle X, X \rangle = -2n \text{Tr}X \theta X = -2n \text{Tr}X I_{2,m} X I_{2,m} = 2n \text{Tr}XX^* I_{2,m}^2 = 2n \text{Tr}XX^* \geq 0.
$$
Let \(C = \{ X \in TM | JX \in TM \} \) : the maximal complex subbundle and \(Q = \{ X \in TM | \Im X \subset TM \} \) the maximal quaternionic subbundle for \(M \) in \(SU(2,m)/S(U(2) \times U(m)) \).

When \(C \) and \(Q \) of \(TM \) are both invariant by the shape operator \(A \) of \(M \), we write

\[
h(C, C^\perp) = 0 \quad \text{and} \quad h(Q, Q^\perp) = 0,
\]

where \(h \) denotes the second fundamental form defined by

\[
g(h(X, Y), N) = g(AX, Y)
\]

for any \(X, Y \) on \(M \).
By using the theory of **Focal points** and the method due to P.B. Eberlein, Berndt and Suh proved the following (See Int. J. Math., 2012)

Theorem 2.1

Let M be a connected hypersurface in $SU_{2,m}/S(U_{2}U_{m})$, $m \geq 2$. Then $h(C, C^\perp) = 0$ and $h(Q, Q^\perp) = 0$ if and only if M is congruent to an open part of the following:

1. (A) a tube around a totally geodesic $SU_{2,m-1}/S(U_{2}U_{m-1})$ in $SU_{2,m}/S(U_{2}U_{m})$, or

2. (B) a tube around a totally geodesic HH^n in $SU_{2,m}/S(U_{2}U_{m})$, $m = 2n$,

3. (C) a horosphere whose center at infinity is singular.
By using the theory of Focal points and the method due to P.B. Eberlein, Berndt and Suh proved the following (See Int. J. Math., 2012)

Theorem 2.1

Let \(M \) be a connected hypersurface in \(SU_{2,m}/S(U_2 U_m) \), \(m \geq 2 \). Then \(h(C, C^\perp) = 0 \) and \(h(Q, Q^\perp) = 0 \) if and only if \(M \) is congruent to an open part of the following:

- (A) a tube around a totally geodesic \(SU_{2,m-1}/S(U_2 U_{m-1}) \) in \(SU_{2,m}/S(U_2 U_m) \), or
- (B) a tube around a totally geodesic \(HH^n \) in \(SU_{2,m}/S(U_2 U_m) \), \(m = 2n \),
- (C) a horosphere whose center at infinity is singular.
By using the theory of Focal points and the method due to P.B. Eberlein, Berndt and Suh proved the following (See Int. J. Math., 2012)

Theorem 2.1

Let M be a connected hypersurface in $SU_{2,m}/S(U_2 U_m)$, $m \geq 2$. Then $h(C, C^\perp) = 0$ and $h(Q, Q^\perp) = 0$ if and only if M is congruent to an open part of the following:

(A) a tube around a totally geodesic $SU_{2,m-1}/S(U_2 U_{m-1})$ in $SU_{2,m}/S(U_2 U_m)$, or

(B) a tube around a totally geodesic HH^n in $SU_{2,m}/S(U_2 U_m)$, $m = 2n$,

(C) a horosphere whose center at infinity is singular.
By using the theory of **Focal points** and the method due to P.B. Eberlein, Berndt and Suh proved the following (See Int. J. Math., 2012)

Theorem 2.1

Let M be a connected hypersurface in $SU_{2,m}/S(U_2 U_m)$, $m \geq 2$. Then $h(C, C^\perp) = 0$ and $h(Q, Q^\perp) = 0$ if and only if M is congruent to an open part of the following:

(A) a tube around a totally geodesic $SU_{2,m-1}/S(U_2 U_{m-1})$ in $SU_{2,m}/S(U_2 U_m)$, or

(B) a tube around a totally geodesic HH^n in $SU_{2,m}/S(U_2 U_m)$, $m = 2n$,

(C) a horosphere whose center at infinity is singular.
Let $H_t = \cos t e_1 + \sin t e_2 \in \mathfrak{A}$: a unit normal to a horosphere M_t, where \mathfrak{A} denotes a maximal abelian subspace of \mathfrak{P} for the E. Cartan’s decomposition $\mathfrak{G} = \mathfrak{K} \oplus \mathfrak{P}$.

Here a horosphere is given by $M_t = S_{H_t} \cdot o$, where S_{H_t} denotes the Lie subgroup of G corresponding to the Lie subalgebra $\mathfrak{G}_H = \mathfrak{S} \ominus \mathfrak{R}H$, $\mathfrak{S} = \mathfrak{A} \oplus \mathfrak{N}$ and $\mathfrak{N} = \oplus_{\lambda \in \Sigma} \mathfrak{G}_\lambda$ for the Iwasawa decomposition $\mathfrak{G} = \mathfrak{K} \oplus \mathfrak{A} \oplus \mathfrak{N}$ with corresponding $G = KAN$.

The shape operator of a horosphere M_t is given by

$$A_H = \text{ad}(H).$$
Weyl Chamber

\[\Lambda = \{ \alpha_1, \alpha_2 \} : \text{a set of simple roots} \]

\[\overline{C}^+(\Lambda) = \{ x \in \mathbb{A} | \langle x, \alpha_i \rangle \geq 0, i = 1,2 \} \]
Introduction
Hyperbolic Grassmannians
Complex Quadrics

Hypersurfaces in $SU_{k,m}/SU_k U_m$
Isometric Reeb Flow

Y.J. Suh
Isometric Reeb Flow on Hermitian Symmetric Spaces
Introduction

Hyperbolic Grassmannians

Complex Quadrics

Hypersurfaces in $SU_k, m / R(U_k U_m)$

Isometric Reeb Flow

A point z at infinity defines a foliation of H^n by parallel horospheres.

$H^n = SO^o(n, 1)/SO(n)$
1. Introduction
 - Homogeneous Hypersurfaces
 - Isometric Reeb Flow

2. Hyperbolic Grassmannians
 - Hypersurfaces in $SU_{2,m}/S(U_2 U_m)$
 - Isometric Reeb Flow

3. Complex Quadrics
 - Real hypersurfaces in Q^{2k}
 - Tubes around the totally geodesic $\mathbb{CP}^k \subset Q^{2k}$
 - Proof of Main Theorem
In this subsection we introduce a classification with \textit{isometric Reeb flow} in $SU_{2,m}/S(U_2 U_m)$ as follows (See Suh, Advances in Applied Math., 2013):

\textbf{Theorem 2.5}

Let M be a connected orientable real hypersurface in $SU_{2,m}/S(U_2 U_m)$, $m \geq 3$. Then the Reeb flow on M is \textit{isometric} if and only if M is congruent to an open part of the following:

- (A) a tube around some totally geodesic $SU_{2,m−1}/S(U_2 U_{m−1})$ in $SU_{2,m}/S(U_2 U_m)$ or,
- (C) a horosphere whose center at infinity is singular.
In this subsection we introduce a classification with isometric Reeb flow in $SU_{2,m}/S(U_2U_m)$ as follows (See Suh, Advances in Applied Math., 2013):

Theorem 2.5

Let M be a connected orientable real hypersurface in $SU_{2,m}/S(U_2U_m)$, $m \geq 3$. Then the Reeb flow on M is isometric if and only if M is congruent to an open part of the following:

- (A) a tube around some totally geodesic $SU_{2,m-1}/S(U_2U_{m-1})$ in $SU_{2,m}/S(U_2U_m)$ or,
- (C) a horosphere whose center at infinity is singular.
In this subsection we introduce a classification with *isometric Reeb flow* in $SU_{2,m}/S(U_2U_m)$ as follows (See Suh, Advances in Applied Math., 2013):

Theorem 2.5

Let M be a connected orientable real hypersurface in $SU_{2,m}/S(U_2U_m)$, $m \geq 3$. Then the Reeb flow on M is isometric if and only if M is congruent to an open part of the following:

- (A) a tube around some totally geodesic $SU_{2,m-1}/S(U_2U_{m-1})$ in $SU_{2,m}/S(U_2U_m)$ or,
- (C) a horosphere whose center at infinity is singular.
Characterization of type (B) and a Horosphere

Definition
For a real hypersurface M in $SU_{2,m}/S(U_2U_m)$ is said to be a contact $\iff \exists$ a non-zero constant function ρ defined on M such that

$$\phi A + A\phi = k\phi, \quad k = 2\rho,$$

The condition is equivalent to

$$g((\phi A + A\phi)X, Y) = 2d\eta(X, Y),$$

where $d\eta$ is defined by

$$d\eta(X, Y) = (\nabla_X\eta)Y - (\nabla_Y\eta)X$$

for any X, Y on M in $SU_{2,m}/S(U_2U_m)$.
Then we give another classification in noncompact complex two-plane Grassmannian $SU_{2,m}/S(U_2U_m)$ in terms of the \textit{contact} hypersurface as follows:

\textbf{Theorem 2.6}

Let M be a \textit{contact} real hypersurface in $SU_{2,m}/S(U_2U_m)$ with constant mean curvature. Then one of the following statements holds:

- (B) M is an open part of a tube around a totally geodesic HH^n in $SU_{2,2n}/S(U_2U_{2n})$, $m = 2n$,
- (C) M is an open part of a horosphere in $SU_{2,m}/S(U_2U_m)$ whose center at infinity is singular and of type $JN \perp \bar{J}N$.
Then we give another classification in noncompact complex two-plane Grassmannian $SU_{2,m}/S(U_2U_m)$ in terms of the \textit{contact} hypersurface as follows:

\begin{theorem}
Let M be a contact real hypersurface in $SU_{2,m}/S(U_2U_m)$ with constant mean curvature. Then one of the following statements holds:

- (B) M is an open part of a tube around a totally geodesic HH^n in $SU_{2,2n}/S(U_2U_{2n})$, $m = 2n$,
- (C) M is an open part of a horosphere in $SU_{2,m}/S(U_2U_m)$ whose center at infinity is singular and of type $JN \perp \tilde{J}N$.
\end{theorem}
Then we give another classification in noncompact complex two-plane Grassmannian $SU_{2,m}/S(U_2U_m)$ in terms of the contact hypersurface as follows:

Theorem 2.6

Let M be a contact real hypersurface in $SU_{2,m}/S(U_2U_m)$ with constant mean curvature. Then one of the following statements holds:

- (B) M is an open part of a tube around a totally geodesic HH^n in $SU_{2,2n}/S(U_2U_{2n})$, $m = 2n$,
- (C) M is an open part of a horosphere in $SU_{2,m}/S(U_2U_m)$ whose center at infinity is singular and of type $JN \perp \JN$.
1 Introduction
 • Homogeneous Hypersurfaces
 • Isometric Reeb Flow

2 Hyperbolic Grassmannians
 • Hypersurfaces in $SU_{2,m}/S(U_2U_m)$
 • Isometric Reeb Flow

3 Complex Quadrics
 • Real hypersurfaces in Q^{2k}
 • Tubes around the totally geodesic $CP^k \subset Q^{2k}$
 • Proof of Main Theorem
The Reeb flow on a real hypersurface in $G_2(\mathbb{C}^{m+2})$ is isometric if and only if M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1}) \subset G_2(\mathbb{C}^{m+2})$.

In view of the previous results a natural expectation would lead to the totally geodesic $Q^{m-1} \subset Q^m$. Surprisingly, this is not the case. In fact, we will prove

Theorem 3.1

Let M be a real hypersurface of the complex quadric Q^m, $m \geq 3$. The Reeb flow on M is isometric if and only if m is even, say $m = 2k$, and M is an open part of a tube around a totally geodesic $\mathbb{C}P^k \subset Q^{2k}$.
In Q^{2k} : Berndt and Suh

M : an open part of a tube over CP^k in Q^{2k}

$H : H = U(k+1) \hookrightarrow SO(2k+2)$

: Isometry group acting cohomogeneity one
The homogeneous quadratic equation

\[Q^m = \{ z \in \mathbb{C}^{m+2} | z_1^2 + \ldots + z_{m+2}^2 = 0 \} \subset \mathbb{C}P^{m+1} \]

defines a complex hypersurface in complex projective space \(\mathbb{C}P^{m+1} = SU_{m+2}/S(U_{m+1}U_1) \).

For a unit normal vector \(N \) of \(Q^m \) at a point \([z] \in Q^m \) we denote by \(A_N \) the shape operator of \(Q^m \) in \(\mathbb{C}P^{m+1} \) with respect to \(N \).

The shape operator is an involution on \(T[z]Q^m \) and \(T[z]Q^m = V(A_N) \oplus JV(A_N) \), where \(V(A_N) \) is the \((+1)\)-eigenspace and \(JV(A_N) \) is the \((-1)\)-eigenspace of \(A_N \).

Geometrically this means that \(A_N \) defines a real structure on the complex vector space \(T[z]Q^m \), or equivalently, is a complex conjugation on \(T[z]Q^m \).
The Riemannian curvature tensor \tilde{R} of Q^m can be expressed as follows:

$$\tilde{R}(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY - 2g(JX, Y)JZ + g(AY, Z)AX - g(AX, Z)AY + g(JAY, Z)JAX - g(JAX, Z)JAY.$$

A nonzero tangent vector $W \in T_z Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m.

1. If a conjugation $A \in \mathcal{A}[z]$ such that $W \in V(A)$, then W is singular, that is \mathcal{A}-principal.

2. If a conjugation $A \in \mathcal{A}[z]$ and orthonormal vectors $X, Y \in V(A)$ such that $W/||W|| = (X + JY)/\sqrt{2}$, then W is said to be \mathcal{A}-isotropic.
The Riemannian curvature tensor \bar{R} of Q^m can be expressed as follows:

$$
\bar{R}(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY - 2g(JX, Y)JZ + g(AY, Z)AX - g(AX, Z)AY + g(JAY, Z)JAX - g(JAX, Z)JAY.
$$

A nonzero tangent vector $W \in T[z]Q^m$ is called singular if it is tangent to more than one maximal flat in Q^m.

1. If a conjugation $A \in \mathcal{A}[z]$ such that $W \in V(A)$, then W is singular, that is \mathcal{A}-principal.

2. If a conjugation $A \in \mathcal{A}[z]$ and orthonormal vectors $X, Y \in V(A)$ such that $W/\|W\| = (X + JY)/\sqrt{2}$, then W is said to be \mathcal{A}-isotropic.
Let M be a real hypersurface of Q^m and denote $\xi = -JN$, where N is a (local) unit normal vector field of M. For $A \in \mathfrak{u}[z]$ and $X \in T[z]M$ we decompose AX as follows:

$$AX = BX + \rho(X)N$$

where BX is the tangential component of AX and

$$\rho(X) = g(AX, N) = g(X, AN) = g(X, AJ\xi) = -g(X, JA\xi) = g(JX, A\xi).$$

Since $JX = \phi X + \eta(X)N$ and $A\xi = B\xi + \rho(\xi)N$ we also have

$$\rho(X) = g(\phi X, B\xi) + \eta(X)\rho(\xi) = g(-\phi B\xi + \rho(\xi)\xi, X).$$

We also define

$$\delta = g(N, AN) = g(JN, JAN) = -g(JN, AJN) = -g(\xi, A\xi).$$
Let M be a real hypersurface of Q^m and denote $\xi = -JN$, where N is a (local) unit normal vector field of M. For $A \in \mathcal{A}[z]$ and $X \in T[z]M$ we decompose AX as follows:

$$AX = BX + \rho(X)N$$

where BX is the tangential component of AX and

$$\rho(X) = g(AX, N) = g(X, AN) = g(X, AJ\xi) = -g(X, JA\xi) = g(JX, A\xi).$$

Since $JX = \phi X + \eta(X)N$ and $A\xi = B\xi + \rho(\xi)N$ we also have

$$\rho(X) = g(\phi X, B\xi) + \eta(X)\rho(\xi) = g(-\phi B\xi + \rho(\xi)\xi, X).$$

We also define

$$\delta = g(N, AN) = g(JN, JAN) = -g(JN, AJN) = -g(\xi, A\xi).$$
Let M be a real hypersurface of Q^m and denote $\xi = -JN$, where N is a (local) unit normal vector field of M. For $A \in \mathcal{A}[z]$ and $X \in T[z]M$ we decompose AX as follows:

$$AX = BX + \rho(X)N$$

where BX is the tangential component of AX and

$$\rho(X) = g(AX, N) = g(X, AN) = g(X, AJ\xi) = -g(X, JA\xi) = g(JX, A\xi).$$

Since $JX = \phi X + \eta(X)N$ and $A\xi = B\xi + \rho(\xi)N$ we also have

$$\rho(X) = g(\phi X, B\xi) + \eta(X)\rho(\xi) = g(-\phi B\xi + \rho(\xi)\xi, X).$$

We also define

$$\delta = g(N, AN) = g(JN, JAN) = -g(JN, AJN) = -g(\xi, A\xi).$$
1 Introduction
- Homogeneous Hypersurfaces
- Isometric Reeb Flow

2 Hyperbolic Grassmannians
- Hypersurfaces in $SU_{2,m}/S(U_2U_m)$
- Isometric Reeb Flow

3 Complex Quadrics
- Real hypersurfaces in Q^{2k}
- Tubes around the totally geodesic $CP^k \subset Q^{2k}$
- Proof of Main Theorem
We assume that m is even, say $m = 2k$. The map
\[
\mathbb{C} P^k \to \mathbb{Q}^{2k} \subset \mathbb{C} P^{2k+1}, \ [Z_1, \ldots, Z_{k+1}] \mapsto [Z_1, \ldots, Z_{k+1}, iZ_1, \ldots, iZ_{k+1}]
\]
gives an embedding of $\mathbb{C} P^k$ into \mathbb{Q}^{2k} as a totally geodesic complex submanifold.

Define a complex structure j on \mathbb{C}^{2k+2} by
\[
j(Z_1, \ldots, Z_{k+1}, Z_{k+2}, \ldots, Z_{2k+2}) = (-Z_{k+2}, \ldots, -Z_{2k+2}, Z_1, \ldots, Z_{k+1}).
\]

Then $j^2 = -I$ and note that $ij = ji$. We can then identify \mathbb{C}^{2k+2} with $\mathbb{C}^{k+1} \oplus j\mathbb{C}^{k+1}$ and get
\[
T_{[z]} \mathbb{C} P^k = \{X + jiX \mid X \in \mathbb{C}^{k+1} \oplus [z]\} = \{X + ijX \mid X \in V(A_z)\}.
\]
The normal space becomes
\[\nu[z] \mathbb{C}P^k = A\overline{z}(T[z] \mathbb{C}P^k) = \{ X - ijX | X \in V(A\overline{z}) \}. \]

The normal N of $T[z] \mathbb{C}P^k$: \mathfrak{A}-isotropic, the four vectors $\{ N, JN, AN, JAN \}$: pairwise orthonormal. The normal Jacobi operator \bar{R}_N is given by
\[
\bar{R}_N Z = \bar{R}(Z, N)N \\
= Z - g(Z, N)N + 3g(Z, JN)JN \\
- g(Z, AN)AN - g(Z, JAN)JAN.
\]

Both $T[z] \mathbb{C}P^k$ and $\nu[z] \mathbb{C}P^k$ are invariant under R_N, and R_N has three eigenvalues $0, 1, 4$ according to $R_N \oplus [AN]$, $T[z] \mathbb{Q}^{2k} \ominus ([N] \oplus [AN])$ and RJN.
Normal geodesic in complex quadrics

M: an open part of a tube over $\mathbb{C}P^k$ in Q^{2k}

Let γ be a geodesic in Q^{2k} with $\gamma(0) = [z]$ and $\dot{\gamma}(0) = N$.

Denote $\gamma_{[z]} = T_{[z]} \mathbb{C}P^k \oplus (\nu_{[z]} \mathbb{C}P^k \ominus \mathbb{R}N)$
To calculate the principal curvatures of the tube of radius $0 < r < \pi/2$ around $\mathbb{C}P^k$: the standard Jacobi field method as described in Section 8.2 of Berndt, Console and Olmos.

Let γ: the geodesic in Q^{2k} with $\gamma(0) = [z]$ and $\dot{\gamma}(0) = N$. γ^\perp: the parallel subbundle of TQ^{2k} along γ defined by

$$
\gamma^\perp(t) = T[\gamma(t)]Q^{2k} \oplus \mathbb{R}\dot{\gamma}(t).
$$

Let us define the γ^\perp-valued tensor field R^\perp_γ along γ by $R^\perp_\gamma(t)X = R(X, \dot{\gamma}(t))\dot{\gamma}(t)$. Now consider the $\text{End}(\gamma^\perp)$-valued differential equation

$$
Y'' + R^\perp_\gamma \circ Y = 0.
$$
Let D be the unique solution of this differential equation with initial values

$$D(0) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \quad D'(0) = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix},$$

where the decomposition of the matrices is with respect to

$$\gamma_{[z]} = T_{[z]}\mathbb{C}P^k \oplus (\nu_{[z]}\mathbb{C}P^k \ominus \mathbb{R}N)$$

and I denotes the identity transformation on the corresponding space.

Then the shape operator $S(r)$ of the tube of radius $0 < r < \pi/2$ around $\mathbb{C}P^k$ with respect to $\dot{\gamma}(r)$ is given by

$$S(r) = -D'(r) \circ D^{-1}(r).$$
Let D be the unique solution of this differential equation with initial values

$$D(0) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \quad D'(0) = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix},$$

where the decomposition of the matrices is with respect to

$$\gamma_{[z]}^\perp = T_{[z]}\mathbb{C}P^k \oplus (\nu_{[z]}\mathbb{C}P^k \ominus \mathbb{R}N)$$

and I denotes the identity transformation on the corresponding space.

Then the shape operator $S(r)$ of the tube of radius $0 < r < \pi/2$ around $\mathbb{C}P^k$ with respect to $\dot{\gamma}(r)$ is given by

$$S(r) = -D'(r) \circ D^{-1}(r).$$
Let D be the unique solution of this differential equation with initial values

$$D(0) = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \quad D'(0) = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix},$$

where the decomposition of the matrices is with respect to

$$\gamma_{[z]}^\perp = T[z] \mathbb{C}P^k \oplus (\nu[z] \mathbb{C}P^k \ominus \mathbb{R}N)$$

and I denotes the identity transformation on the corresponding space.

Then the shape operator $S(r)$ of the tube of radius $0 < r < \pi/2$ around $\mathbb{C}P^k$ with respect to $\dot{\gamma}(r)$ is given by

$$S(r) = -D'(r) \circ D^{-1}(r).$$
If we decompose $\gamma_{[z]}$ further into

$$\gamma_{[z]} = (T_{[z]}\mathbb{C}P^k \ominus [AN]) \oplus [AN] \oplus (\nu_{[z]}\mathbb{C}P^k \ominus [N]) \oplus \mathbb{R}JN,$$

we get by explicit computation that

$$S(r) = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \tan(r) & 0 & 0 \\
0 & 0 & -\cot(r) & 0 \\
0 & 0 & 0 & -2\cot(2r)
\end{pmatrix}$$

with respect to that decomposition.
If we decompose $\gamma_{[z]}^\perp$ further into

$$\gamma_{[z]}^\perp = (T_{[z]}\mathbb{C}P^k \ominus [AN]) \oplus [AN] \oplus (\nu_{[z]}\mathbb{C}P^k \ominus [N]) \oplus \mathbb{R}JN,$$

we get by explicit computation that

$$S(r) = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & \tan(r) & 0 & 0 \\
0 & 0 & -\cot(r) & 0 \\
0 & 0 & 0 & -2\cot(2r)
\end{pmatrix}$$

with respect to that decomposition.
Proposition 3.1

Let M be the tube of radius $0 < r < \pi/2$ around the totally geodesic \mathbb{CP}^k in Q^{2k}. Then the following hold:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of \mathfrak{a}-isotropic singular.
3. M has four distinct constant principal curvatures.

<table>
<thead>
<tr>
<th>principal curvature</th>
<th>eigenspace</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\mathcal{C} \ominus Q$</td>
<td>2</td>
</tr>
<tr>
<td>$\tan(r)$</td>
<td>$T \mathbb{CP}^k \ominus (\mathcal{C} \ominus Q)$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$-\cot(r)$</td>
<td>$\nu \mathbb{CP}^k \ominus \mathbb{C} \nu M$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$-2 \cot(2r)$</td>
<td>\mathcal{F}</td>
<td>1</td>
</tr>
</tbody>
</table>

4. $S\phi = \phi S$.
5. The Reeb flow on M is an isometric flow.
Proposition 3.1

Let M be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k}. Then the following hold:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of \mathfrak{a}-isotropic singular.
3. M has four distinct constant principal curvatures.

\[
\begin{array}{|c|c|c|}
\hline
\text{principal curvature} & \text{eigenspace} & \text{multiplicity} \\
\hline
0 & \mathbb{C} \oplus Q & 2 \\
\tan(r) & T\mathbb{C}P^k \oplus (\mathbb{C} \oplus Q) & 2k - 2 \\
-\cot(r) & \nu\mathbb{C}P^k \oplus \mathbb{C} \nu M & 2k - 2 \\
-2\cot(2r) & \mathcal{F} & 1 \\
\hline
\end{array}
\]

4. $S\phi = \phi S$.
5. The Reeb flow on M is an isometric flow.
Proposition 3.1

Let M be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k}. Then the following hold:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of \mathfrak{u}-isotropic singular.
3. M has four distinct constant principal curvatures.

<table>
<thead>
<tr>
<th>principal curvature</th>
<th>eigenspace</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\mathcal{C} \ominus Q$</td>
<td>2</td>
</tr>
<tr>
<td>$\tan(r)$</td>
<td>$T\mathbb{C}P^k \ominus (\mathcal{C} \ominus Q)$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$- \cot(r)$</td>
<td>$\nu\mathbb{C}P^k \ominus \mathcal{C} \nu M$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$- 2 \cot(2r)$</td>
<td>\mathcal{F}</td>
<td>1</td>
</tr>
</tbody>
</table>

4. $S\phi = \phi S$.
5. The Reeb flow on M is an isometric flow.
Proposition 3.1

Let M be the tube of radius $0 < r < \pi/2$ around the totally geodesic \mathbb{CP}^k in Q^{2k}. Then the following hold:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of \mathfrak{a}-isotropic singular.
3. M has four distinct constant principal curvatures.

<table>
<thead>
<tr>
<th>principal curvature</th>
<th>eigenspace</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$C \ominus Q$</td>
<td>2</td>
</tr>
<tr>
<td>$\tan(r)$</td>
<td>$T\mathbb{CP}^k \ominus (C \ominus Q)$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$-\cot(r)$</td>
<td>$\nu\mathbb{CP}^k \ominus \mathbb{C}\nu M$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$-2\cot(2r)$</td>
<td>\mathcal{F}</td>
<td>1</td>
</tr>
</tbody>
</table>

4. $S\phi = \phi S$.
5. The Reeb flow on M is an isometric flow.
Proposition 3.1

Let M be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k}. Then the following hold:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of A-isotropic singular.
3. M has four distinct constant principal curvatures.

<table>
<thead>
<tr>
<th>principal curvature</th>
<th>eigenspace</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\mathbb{C} \ominus \mathbb{Q}$</td>
<td>2</td>
</tr>
<tr>
<td>$\tan(r)$</td>
<td>$T\mathbb{C}P^k \ominus (\mathbb{C} \ominus \mathbb{Q})$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$-\cot(r)$</td>
<td>$\nu\mathbb{C}P^k \ominus \mathbb{C}\nu M$</td>
<td>$2k - 2$</td>
</tr>
<tr>
<td>$-2\cot(2r)$</td>
<td>\mathcal{F}</td>
<td>1</td>
</tr>
</tbody>
</table>

4. $S\phi = \phi S$.

5. The Reeb flow on M is an isometric flow.
Proposition 3.1

Let M be the tube of radius $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^{2k}. Then the following hold:

1. M is a Hopf hypersurface.
2. The normal bundle of M consists of \mathcal{A}-isotropic singular.
3. M has four distinct constant principal curvatures.

<table>
<thead>
<tr>
<th>principal curvature</th>
<th>eigenspace</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 \quad \tan(r) \quad - \cot(r) \quad -2 \cot(2r)</td>
<td>$\mathcal{C} \ominus Q$ \quad $TCP^k \ominus (\mathcal{C} \ominus Q)$ \quad $\nu CP^k \ominus C\nu M$ \quad \mathcal{F}</td>
<td>2 \quad 2k – 2 \quad 2k – 2 \quad 1</td>
</tr>
</tbody>
</table>

4. $S\phi = \phi S$.
5. The Reeb flow on M is an isometric flow.
Introduction

1. Homogeneous Hypersurfaces
2. Isometric Reeb Flow

Hyperbolic Grassmannians

3. Hypersurfaces in $SU_{2,m}/S(U_2 U_m)$
4. Isometric Reeb Flow

Complex Quadrics

5. Real hypersurfaces in Q^{2k}
6. Tubes around the totally geodesic $CP^k \subset Q^{2k}$
7. Proof of Main Theorem
Now we investigate real hypersurfaces in Q^m for which the Reeb flow is isometric. From this, we get a complete expression for the covariant derivative as follows:

$$(\nabla_X S)Y = \{d\alpha(X)\eta(Y) + g((\alpha S\phi - S^2\phi)X, Y)$$

$$+\delta\eta(Y)\rho(X) + \delta g(BX, \phi Y) + \eta(BX)\rho(Y}\}\xi$$

$$+\{\eta(Y)\rho(X) + g(BX, \phi Y)\}B\xi + g(BX, Y)\phi B\xi$$

$$-\rho(Y)BX - \eta(Y)\phi X - \eta(BY)\phi BX.$$
From Proposition and Lemma the principal curvature function α is constant. Then we get

$$(\lambda^2 - \alpha \lambda)Y + (\lambda^2 - \alpha \lambda)Z = (S^2 - \alpha S)X = Y.$$

By virtue of this equation, we can assert the following propositions:

Proposition 3.2

Let M be a real hypersurface in Q^m, $m \geq 3$, with isometric Reeb flow. Then the distributions Q and $C \ominus Q = [B\xi]$ are invariant.

Proposition 3.3

Let M be a real hypersurface in Q^m, $m \geq 3$, with isometric Reeb flow. Then m is even, say $m = 2k$, and the real structure A maps T_λ onto T_μ, and vice versa.
From Proposition and Lemma the principal curvature function α is constant. Then we get

$$(\lambda^2 - \alpha \lambda)Y + (\lambda^2 - \alpha \lambda)Z = (S^2 - \alpha S)X = Y.$$

By virtue of this equation, we can assert the following propositions:

Proposition 3.2

Let M be a real hypersurface in Q^m, $m \geq 3$, with isometric Reeb flow. Then the distributions Q and $C \ominus Q = [B\xi]$ are invariant.

Proposition 3.3

Let M be a real hypersurface in Q^m, $m \geq 3$, with isometric Reeb flow. Then m is even, say $m = 2k$, and the real structure A maps T_λ onto T_μ, and vice versa.
From Proposition and Lemma the principal curvature function α is constant. Then we get

$$(\lambda^2 - \alpha \lambda)Y + (\lambda^2 - \alpha \lambda)Z = (S^2 - \alpha S)X = Y.$$

By virtue of this equation, we can assert the following propositions:

Proposition 3.2

Let M be a real hypersurface in Q^m, $m \geq 3$, with isometric Reeb flow. Then the distributions Q and $C \ominus Q = [B\xi]$ are invariant.

Proposition 3.3

Let M be a real hypersurface in Q^m, $m \geq 3$, with isometric Reeb flow. Then m is even, say $m = 2k$, and the real structure A maps T_λ onto T_μ, and vice versa.
For each point $[z] \in M$ we denote by $\gamma[z]$ the geodesic in Q^{2k}
with $\gamma[z](0) = [z]$ and $\dot{\gamma}[z](0) = N[z]$ and by F the smooth map
\[
F : M \longrightarrow Q^m, [z] \longrightarrow \gamma[z](r).
\]
F is the displacement of M at distance r in the direction of N.
The differential $d[z]F$ of F at $[z]$ can be computed by
\[
d[z]F(X) = Z_X(r),
\]
where Z_X is the Jacobi vector field along $\gamma[z]$ with $Z_X(0) = X$
and $Z'_X(0) = -SX$. The \mathfrak{a}-isotropic N gives that
$R_N = R(Z, N)N$ has the three constant eigenvalues $0, 1, 4$ with
the corresponding eigenbundles
\[
\nu M \oplus (\mathcal{C} \ominus \mathcal{Q}) = \nu M \oplus T_\nu,
\]
\[
\mathcal{Q} = T_\lambda \oplus T_\mu \quad \text{and} \quad \mathcal{F} = T_\alpha.
\]
Rigidity of **totally geodesic submanifolds**: $\implies M$ is an open part of a tube of radius r around a k-dimensional connected, complete, **totally geodesic** complex submanifold P of Q^{2k}.

Klein classified the **totally geodesic** submanifolds P in Q^{2k} as follows:

The focal submanifold P: a **totally geodesic** $Q^k \subset Q^{2k}$ or a **totally geodesic** $\mathbb{C}P^k \subset Q^{2k}$.

$\iff M$ is an open part of a tube around $\mathbb{C}P^k$.
References

References

References

References

References II

References II

References II

References III

References IV

References IV

References IV

References IV

References V

References V

References V

References V

THANKS FOR YOUR ATTENTION!