Gossip in $\text{CAT}(\kappa)$ metric spaces

Anass Bellachehab Jérémie Jakubowicz

Télécom SudParis, Institut Mines-Télécom & CNRS UMR 5157

GSI 2015
Palaiseau October 28
We consider a network of N agents such that:

- The network is represented by a connected, undirected graph $G = (V, E)$, where $V = \{1, \ldots, N\}$ stands for the set of agents and E denotes the set of available communication links between agents.
- At any given time t an agent v stores data represented as an element $x_v(t)$ of a data space \mathcal{M}.
- $X_t = (x_1(t), \ldots, x_N(t))$ is the tuple of data values of the whole network at instant t.
Each agent has its own Poisson clock that ticks with a common intensity λ (the clocks are identically made) independently of other clocks.

When an agent clock ticks, the agent is able to perform some computations and wake up some neighboring agents.

The goal is to take the system from an initial state $X(0)$ to a consensus state; meaning a state of the form $X_\infty = (x_\infty, \ldots, x_\infty)$ with: $x_\infty \in M$.
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_0 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \\ -2 & 1 \\ 1 & 2 \end{pmatrix} \]
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_0 = \begin{pmatrix} -1 & -1 \\ 1 & -1 \\ -2 & 1 \\ 1 & 2 \end{pmatrix} \]
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_1 = \begin{pmatrix} 0 & -1 \\ 0 & -1 \\ -2 & 1 \\ 1 & 2 \end{pmatrix} \]
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_1 = \begin{pmatrix} 0 & -1 \\ 0 & -1 \\ -2 & 1 \\ 1 & 2 \end{pmatrix} \]
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_1 = \begin{pmatrix} 0.5 & 0.5 \\ 0 & -1 \\ -2 & 1 \\ 0.5 & 0.5 \end{pmatrix} \]
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_1 = \begin{pmatrix} 0.5 & 0.5 \\ 0 & -1 \\ -2 & 1 \\ 0.5 & 0.5 \end{pmatrix} \]
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_2 = \begin{pmatrix} 0.5 & 0.5 \\ -1 & 0 \\ -1 & 0 \\ 0.5 & 0.5 \end{pmatrix} \]
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_\infty = \begin{pmatrix} -0.25 & 0.25 \\ -0.25 & 0.25 \\ -0.25 & 0.25 \\ -0.25 & 0.25 \end{pmatrix} \]
Random Pairwise Gossip (Xiao & Boyd’04)

\[x_\infty = \begin{pmatrix} -0.25 & 0.25 \\ -0.25 & 0.25 \\ -0.25 & 0.25 \\ -0.25 & 0.25 \end{pmatrix} \]

\[x_n = \left(I - \frac{1}{2}(\delta_{i_n} - \delta_{j_n})(\delta_{i_n} - \delta_{j_n})^T \right) x_{n-1} \]
A natural extension in a metric setting
Outline

1. Motivation
2. State of the art
3. CAT(κ) spaces
4. Previous result for κ = 0
5. Why the κ > 0 case is more complex
6. Our result
In its Euclidean setting, Random Pairwise Midpoint cannot address several useful type of data:

- Sphere positions (Sphere)
- Line orientations (Projective space)
- Solid orientations (Rotations)
- Subspaces (Grassmanians)
- Phylogenetic Trees (Metric space)
- Cayley graphs (Metric space)
- Reconfigurable systems (Metric space)
State of the art

- Consensus optimization on manifolds: [Sarlette-Sepulchre'08], [Tron et al.'12], [Bonnabel'13]
- Synchronization on the circle: [Sarlette et al.'08]
- Synchronization on SO(3): [Tron et al.'12]
- Our previous work: Distributed pairwise gossip on $CAT(0)$ spaces

Caveat: In this work, we deal the problem of synchronization, i.e. attaining a consensus, whatever its value; contrarily to the Euclidean case where it is known that random pairwise midpoints converges to \bar{x}_0.
CAT(\(\kappa\)) spaces

Model spaces
Consider a model surface \(\mathcal{M}_\kappa\) with constant sectional curvature \(\kappa\):
- \(\kappa < 0\) corresponds to a hyperbolic space
- \(\kappa = 0\) corresponds to a Euclidean space
- \(\kappa > 0\) corresponds to a sphere

Geodesics
Assume \(\mathcal{M}\) is a metric space equipped with metric \(d\). A map \(\gamma : [0, l] \to \mathcal{M}\) such that:

\[
\forall 0 \leq t, t' \leq l, \quad d(\gamma(t), \gamma(t')) = |t - t'|
\]

is called a geodesic in \(\mathcal{M}\); \(a = \gamma(0)\) and \(b = \gamma(l)\) are its endpoints. If there exists one and only one geodesic linking \(a\) to \(b\), it is denoted \([a, b]\).
CAT(κ) spaces (cont’d)

Triangles
A triple of geodesics γ, γ′ and γ” with respective endpoints a, b and c is called a triangle and is denoted △(γ, γ′, γ”) or △(a, b, c) when there is no ambiguity.

Comparison triangles
When κ ≤ 0, given a triangle △(γ, γ′, γ”), there always exist a triangle △(a_κ, b_κ, c_κ) in \(M_κ \) such that \(d(a, b) = d(a_κ, b_κ) \), \(d(b, c) = d(b_κ, c_κ) \) and \(d(c, a) = d(c_κ, a_κ) \) with \(a = γ(0) \), \(b = γ′(0) \) and \(c = γ”(0) \).
CAT(κ) spaces (cont’d)

CAT(κ) inequality

A triangle \(\triangle(\gamma, \gamma', \gamma'') \) in a metric space \(\mathcal{M} \) satisfies the CAT(κ) inequality if for any \(x \in [a, b] \) and \(y \in [a, c] \) one has:

\[
d(x, y) \leq d(x_\kappa, y_\kappa)
\]

where \(x_\kappa \in [a_\kappa, b_\kappa] \) is such that \(d(a_\kappa, x_\kappa) = d(a, x) \) and \(y_\kappa \in [a_\kappa, c_\kappa] \) is such that \(d(a_\kappa, y_\kappa) = d(a, y) \).

A metric space is said CAT(κ) if every pair of points can be joined by a geodesic and every triangle with perimeter less than

\[
2D_\kappa = \frac{2\pi}{\sqrt{\kappa}}
\]
satisfy the CAT(κ) inequality.
Formal setting

Assumptions

1. Time is discrete \(t = 0, 1, \ldots \)
2. At each time each agent holds a “value” \(x_{t,v} \) in a \(CAT(\kappa) \) metric space \(\mathcal{M} \)
3. At each time \(t \), an agent \(V_t \) randomly wakes up and wakes up a neighbor \(W_t \), according to the probability distribution:

\[
\mathbb{P} \left[\{ V_k, W_k \} = \{ v, w \} \right] = \begin{cases}
P_{v,w} > 0 & \text{if } v \sim w \\
0 & \text{otherwise}
\end{cases}
\]

Algorithm description

\[
x_{t,v} = \begin{cases}
\text{Midpoint}(x_{t-1,v}, V_t, x_{t-1}, W_t) & \text{if } v \in \{ V_t, W_t \} \\
x_{t-1,v} & \text{otherwise}
\end{cases}
\]
Previous result

The algorithm is sound
Because geodesics exist and are unique in CAT(0) spaces.

Convergence
The algorithm converges to a consensus with probability 1, whatever the initial state x_0.

Rate of convergence
Convergence occur at a linear rate: define

$$\sigma^2(x) = \sum_{v \sim w} d^2(x_v, x_w) ;$$

then, there exists a constant $L < 0$ such that

$$\mathbb{E}\sigma^2(X_k) \leq C_0 \exp(Lk)$$
What changes for the $\kappa > 0$ (the case of the sphere)
What changes for the $\kappa > 0$ (the case of the sphere)
What changes for the $\kappa > 0$ (the case of the sphere)
What changes for the $\kappa > 0$ (the case of the sphere)
What changes for the $\kappa > 0$ (the case of the sphere)
What changes for the $\kappa > 0$ (the case of the sphere)
What changes for the $\kappa > 0$ (the case of the sphere)
What changes for the $\kappa > 0$ (the case of the sphere)
What changes for the $\kappa > 0$ (the case of the sphere)
Our result
Provided the diameter of the initial set of values is less than $D_\kappa/2$, the algorithm is sound.

Because geodesics exist and are unique using this restriction.

Convergence
The algorithm converges to a consensus with probability 1.

Rate of convergence
Convergence occurs at a linear rate: define

$$\sigma^2(x) = \sum_{v \sim w} \chi_\kappa(d(x_v, x_w)) ;$$

with:

$$\chi_\kappa(x) = 1 - \cos(\sqrt{\kappa}x)$$

then, there exists a constant $L \in (-1, 0)$ such that:

$$\mathbb{E}\sigma^2(X_k) \leq C_0 \exp(Lk)$$
Before iteration

\[X_{t-1}, u \]

\[X_{t-1}, V_t \]

\[X_{t-1}, W_t \]
After iteration

\[X_{t,u} \]

\[X_{t,V_t} \]

\[X_{t,W_t} \]
Net balance

\[x_{t-1,u} = x_t - x_{t-1, V_t} - x_{t, V_t} - x_{t, W_t} + x_{t-1, W_t} \]
Sketch of proof (Net balance)

Let us look at the increments:

\[
N(\sigma^2_\kappa(X_t) - \sigma^2_\kappa(X_{t-1})) = -\chi_\kappa(d(X_{V_t}(t-1), X_{W_t}(t-1))) \\
+ \sum_{u \in V \setminus (V_t, W_t, u)} T_\kappa(V_t, W_t, u)
\]

with:

\[
T_\kappa(V_t, W_t, u) = 2\chi_\kappa(d(X_u(t), M_t)) - \chi_\kappa(d(X_u(t), X_{V_t}(t-1))) \\
- \chi_\kappa(d(X_u(t), X_{W_t}(t-1)))
\]

Using the inequality:

\[
\chi_\kappa \left(d \left(\left\langle \frac{p + q}{2} \right\rangle, r \right) \right) \leq \frac{\chi_\kappa(d(p, r)) + \chi_\kappa(d(q, r))}{2}
\]
Sketch of proof (Two propositions)

We can prove the first proposition:

\[
\mathbb{E}[\sigma_\kappa^2(X_{k+1}) - \sigma_\kappa^2(X_k)] \leq -\frac{1}{N} \mathbb{E} \Delta_\kappa(X_k)
\]

with:

\[
\Delta_\kappa(x) = \frac{1}{2N} \sum_{\{v,w\} \in E} P_{v,w} \chi_\kappa(d(x_v, x_w))
\]

Using graph connectedness we prove a second proposition:
Assume \(G = (V, E) \) is an undirected connected graph, there exists a constant \(C_G \geq 1 \) depending on the graph only such that:

\[
\forall x \in \mathcal{M}^N, \quad \frac{1}{2} \Delta_\kappa(x) \leq \sigma_\kappa^2(x) \leq C_G \Delta_\kappa(x)
\]
The following lemma
Assume a_n is a sequence of nonnegative numbers such that $a_{n+1} - a_n \leq -\beta a_n$ with $\beta \in (0, 1)$. Then,

$$\forall n \geq 0, \quad a_n \leq a_0 \exp(-\beta n)$$

Combined with the two propositions, gives the desired result.

$$\mathbb{E} \sigma^2(X_k) \leq \exp(Lk)$$
Simulation results

- Sphere
Simulation results

- Rotations

![Graph showing the log variance over n-iterations](image-url)
Summary

- We have proved that, when the data belong to complete CAT(\(\kappa\)) metric space, *provided the initial values are close enough*, the same algorithm makes sense and also converge linearly.

- We have checked that our results are consistent with simulations.