Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2014)

Clos Lucé, Amboise, France
21–26 September 2014

Editors
Ali Mohammad-Djafari and Frederic Barbaresco
AIP Proceedings: A name your community will know and respect

40 years’ experience • 100,000+ papers • 1,500+ volumes

A world-class proceedings service for all events: From workshops to the largest international conference

- Online-only proceedings
- Optional printed copies or CDs for participants
- Rapid online and print publication

Our wealth of experience and expertise will ensure an outstanding publication experience.

Publication fees which work with your budget

- Simple online publication fees: Completely independent of page counts, publish substantial papers at no extra cost.
- Options for online access: 1-year conference access or select perpetual open access for the entire community.

Flexibility in the printed medium

Choose from these options to print all papers or just a selection of articles from the conference:

- **Conference collection**
 - Printed copies containing all papers published in the online proceedings.
 - For editors who want to reproduce all online papers for their participants.

- **Selected papers**
 - Printed copies containing a selection of papers chosen by the editors.
 - Choose to print just the best work, avoid the cost of printing everything.

- **Workshops and summer schools**
 - Printed copies designed especially for summer schools and workshops.
 - Visibility and identity for events publishing tutorials and reviews.

Get a proposal for your proceedings in 3 simple steps

Step 1. Obtain a proceedings questionnaire by writing to us at confproc@aip.org or download from proceedings.aip.org

Step 2. Fill in the questionnaire with details of your conference and return it to confproc@aip.org

Step 3. We’ll review the questionnaire and your requirements and write to confirm if we can offer a proposal.
Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2014)

Clos Lucé, Amboise, France
21–26 September 2014

Editors
Ali Mohammad-Djafari
Supélec, Cedex, France
Frederic Barbaresco
Thales Air Systems, Limours, France

Sponsoring Organizations
Société de l'Electricité, de l'Electronique, des technologies de l'Information et de la Communication
Entropy
Société Mathématique de France
Société de Mathématiques Appliquées et Industrielles
Boise State University
CNRS – SUPELEC – Université Paris Sud

All papers have been peer reviewed.
Table of Contents

Preface: Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2014)
Ali Mohammad-Djafari and Frédéric Barbaresco 1

General Chairs of MaxEnt 2014 5

MaxEnt 2014 Keynote Speakers 6

Tutorial Abstracts 9

Group Photo 13

Sponsors 14

TUTORIALS

The basics of information geometry
Ariel Caticha 15

Failures of information geometry
John Skilling 27
Bayesian or Laplacian inference, entropy and information theory and information geometry in data and signal processing
Ali Mohammad-Djafari

43

ORAL SESSION: STATISTICAL MANIFOLDS

Statistics on Lie groups: A need to go beyond the pseudo-Riemannian framework
Nina Miolane and Xavier Pennec

59

From almost Gaussian to Gaussian

Max H. M. Costa and Olivier Rioul

67

Koszul information geometry and Souriau Lie group thermodynamics
Frederic Barbaresco

74

ORAL SESSION: INFORMATION GEOMETRY

Transversely Hessian foliations and information geometry
Michel Nguiffo Boyom and Robert Wolak

82

Fisher information geometry of the barycenter map
Mitsuhiko Itoh and Hiroyasu Satoh

90

Statistical analysis via the curvature of data space
Kei Kobayashi, Orita Mitsuru, and Henry P. Wynn

97

ORAL SESSION: HISTORY OF SCIENCE AND BAYESIAN INFERENCE

Shannon’s formula and Hartley’s rule: A mathematical coincidence?
Olivier Rioul and José Carlos Magossi

105

Application of Kähler manifold to signal processing and Bayesian inference
Jaehyung Choi and Andrew P. Mullhaupt

113
Nested sampling with demons
Michael Habeck 121

ORAL SESSION: FOUNDATIONS AND GEOMETRY
Reference duality and representation duality in information geometry
Jun Zhang 130

Number of microstates and configurational entropy for steady-state two-phase flows in pore networks
T. Daras and M. S. Valavanides 147

ORAL SESSION - QUANTUM PHYSICS
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Ariel Caticha, Daniel Bartolomeo, and Marcel Reginatto 155

The geometrical structure of quantum theory as a natural generalization of information geometry
Marcel Reginatto 165

The MaxEnt extension of a quantum Gibbs family, convex geometry and geodesics
Stephan Weis 173

Beyond Landau–Pollak and entropic inequalities: Geometric bounds imposed on uncertainties sums
S. Zozor, G. M. Bosyk, M. Portesi, T. M. Osán, and P. W. Lamberti 181

ORAL SESSION: QUANTUM ENTROPY
Anyons in the operational formalism
Klil H. Neori and Philip Goyal 189

On variational definition of quantum entropy
Roman V. Belavkin 197
Duality for maximum entropy diffusion MRI
Pierre Maréchal

ORAL SESSION: GEOMETRIC STRUCTURE OF INFORMATION
Topological forms of information
Pierre Baudot and Daniel Bennequin

Information geometric density estimation
Ke Sun and Stéphane Marchand-Maillet

ORAL SESSION: BAYESIAN LEARNING, INFORMATION, DIVERGENCE
A novel boosting algorithm for multi-task learning based on the Itakuda-Saito divergence
Takashi Takenouchi, Osamu Komori, and Shinto Eguchi

On learning statistical mixtures maximizing the complete likelihood
Frank Nielsen

Robust phase estimation for signals with a low signal-to-noise-ratio
U. von Toussaint

Time-coherency of Bayesian priors on transient semi-Markov chains for audio-to-score alignment
Philippe Cuvillier

ORAL SESSION: ENTROPY AND INFORMATION GEOMETRY
Geometry of F-likelihood estimators and F-Max-Ent theorem
K. V. Harsha and K. S. Subrahmanian Moosath

Maximum entropy analysis of flow and reaction networks
Robert K. Niven, Markus Abel, Michael Schlegel, and Steven H. Waldrip
ORAL SESSION - BAYESIAN INFERENCE AND MAXIMUM ENTROPY PRINCIPLE

Information geometry of Bayesian statistics
Hiroshi Matsuzoe 279

MinNorm approximation of MaxEnt/MinDiv problems for probability tables
Patrick Bogaert and Sarah Gengler 287

Duality in a maximum generalized entropy model
Shinto Eguchi, Osamu Komori, and Atsumi Ohara 297

POSTER SESSIONS

Contrast enhancement in polarimetric imaging with correlated noise fluctuations
Swapnesh Panigrahi, Julien Fade, and Mehdi Alouini 305

On bounds for the Fisher-Rao distance between multivariate normal distributions
João E. Strapasson, Julianna P. S. Porto, and Sueli I. R. Costa 313

A Bayesian method to estimate the neutron response matrix of a single crystal CVD diamond detector
Marcel Reginatto, Francis Gagnon-Moisson, Jorge Guerrero Araque, Ralf Nolte, Miroslav Zbořil, and Andreas Zimbal 321

Signal analysis of NEMS sensors at the output of a chromatography column
François Bertholon, Olivier Harant, Christian Jutten, Bertrand Bourlon, Laurent Gerfault, and Pierre Grangeat 329

Maximum power entropy method for ecological data analysis
Osamu Komori and Shinto Eguchi 337
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entropic quantization of scalar fields</td>
<td>Selman Ipek and Ariel Caticha</td>
<td>345</td>
</tr>
<tr>
<td>Gradient flow of the stochastic relaxation on a generic exponential</td>
<td>Luigi Malagò and Giovanni Pistone</td>
<td>353</td>
</tr>
<tr>
<td>family</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How-to: Bayes with Mathematica</td>
<td>Romke Bontekoe</td>
<td>361</td>
</tr>
<tr>
<td>Non-negative matrix factorization and term structure of interest</td>
<td>Hellinton H. Takada and Julio M. Stern</td>
<td>369</td>
</tr>
<tr>
<td>rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information criterion for selection of ubiquitous factors</td>
<td>Hellinton H. Takada and Julio M. Stern</td>
<td>378</td>
</tr>
<tr>
<td>Robust Burg estimation of stationary autoregressive mixtures</td>
<td>Alexis Decurninge and Frederic Barbaresco</td>
<td>387</td>
</tr>
<tr>
<td>covariance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonic maps relative to α-connections of statistical</td>
<td>Keiko Uohashi</td>
<td>395</td>
</tr>
<tr>
<td>manifolds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non parametric denoising methods based on wavelets: Application to</td>
<td>Sid Ahmed Soumia, Zoubeida Messali, Abdeldjalil Ouahabi,</td>
<td>403</td>
</tr>
<tr>
<td>electron microscopy images in low exposure time</td>
<td>Sylvain Trepout, Cedric Messaoudi, and Sergio Marco</td>
<td></td>
</tr>
<tr>
<td>Most likely maximum entropy for population analysis: A case study</td>
<td>Youssef Bennani, Luc Pronzato, and Maria João Rendas</td>
<td>414</td>
</tr>
<tr>
<td>in decompression sickness prevention</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aero-acoustics source separation with sparsity inducing priors in the frequency domain
Olivier Schwander, José Picheral, Nicolas Gac, Ali Mohammad-Djafari, and Daniel Blacodon
422

Bounds on thermal efficiency from inference
Ramandeep S. Johal, Renuka Rai, and Günter Mahler
432

Assessment of an MCMC algorithm convergence for Bayesian estimation of the particle size distribution from multiangle dynamic light scattering measurements
Abdelbassit Boualem, Meryem Jabloun, Philippe Ravier, Marie Naiim, and Alain Jalocha
439

A Bayesian analysis of HAT-P-7b using the EXONEST algorithm
Ben Placek and Kevin H. Knuth
447

Entropy-based goodness-of-fit test for positive stable law
Mahdi Teimouri, Saeid Rezakhah, and Adel Mohammadpour
456

On coarse graining of information and its application to pattern recognition
Ali Ghaderi
463

Bayesian analysis of factors associated with fibromyalgia syndrome subjects
Veroni Jayawardana, Adom Giffin, Sumona Mondal, and Leslie Russek
471

MaxEnt analysis of a water distribution network in Canberra, ACT, Australia
Steven H. Waldrip, Robert K. Niven, Markus Abel, Michael Schlegel, and Bernd R. Noack
479

A goodness-of-fit test of student distributions based on Rényi entropy
Justine Lequesne
487
A special form of SPD covariance matrix for interpretation and visualization of data manipulated with Riemannian geometry
Marco Congedo and Alexandre Barachant 495

Reparameterization invariant distance on the space of curves in the hyperbolic plane
Alice Le Brigant, Marc Arnaudon, and Frédéric Barbaresco 504

First-order dependence trees with cumulative residual entropy
Muhammed Sutcu and Ali E. Abbas 512

deBruijn identities: From Shannon, Kullback-Leibler and Fisher to generalized \(\phi \)-entropies, \(\phi \)-divergences and \(\phi \)-Fisher informations
Steeve Zozor and Jean-Marc Brossier 522

Distributed consensus for metamorphic systems using a gossip algorithm for CAT(0) metric spaces
Anass Bellachehab and Jérémie Jakubowicz 530

Information-based physics, influence, and forces
James Lyons Walsh and Kevin H. Knuth 538

Estimating the periodic components of a biomedical signal through inverse problem modelling and Bayesian inference with sparsity enforcing prior
Mircea Dumitru and Ali-Mohammad Djafari 548

Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model
Li Wang, Nicolas Gac, and Ali Mohammad-Djafari 556
Geodesic least squares regression for scaling studies in magnetic confinement fusion
Geert Verduolaenge 564

A hierarchical variational Bayesian approximation approach in acoustic imaging
Ning Chu, Ali Mohammad-Djafari, Nicolas Gac, and José Picheral 572

A probabilistic method to quantify the colocalization of markers on intracellular vesicular structures visualized by light microscopy
Yannis Kalaidzidis, Inna Kalaidzidis, and Marino Zerial 580

The problem of motion: The statistical mechanics of Zitterbewegung
Kevin H. Knuth 588

Origin of generalized entropies and generalized statistical mechanics for superstatistical multifractal systems
Bahruz Gadjiev and Tatiana Progulova 595

Towards automorphic to differential correspondence for vertex algebras
Alexander Zuevsky 603

Using Bayes factors for multi-factor, biometric authentication
A. Giffin, J. D. Skufca, and P. A. Lao 611
Preface: Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2014)

On behalf of both organizing and scientific committees, it was a great pleasure to welcome all delegates, representatives and participants from around the world to MAXENT 2014 conference. The thirty-fourth International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering was held in France, organized by SEE (https://www.see.asso.fr/en), under the auspices of Centre national de la recherche scientifique (CNRS), École supérieure d’électricité (SUPELEC) and Université Paris Sud (UPS), Orsay. MAXENT 2014 benefited from scientific support of SMF (Société Mathématique de France: http://smf.emath.fr/), and financial sponsoring from Jaynes foundation.

MaxEnt 2014 took place in the Château Le Clos Lucé (http://www.vinci-closlucé.com/en/), the last residence of Leonardo Da Vinci, in Amboise at the heart of Loire Valley Castles, labeled by UNESCO as World heritage. Le Clos Lucé is at proximity of King Francis the First Amboise Castle, apex of the French Renaissance and of Vouvray wines vineyards and cellars. We express all our thanks to the Clos Lucé Castle and Saint Bris Family for hosting this event in this historical place.

MaxEnt 2014, as usual, strived to present Bayesian inference and Maximum Entropy methods in data analysis, signal and image processing, information processing and inverse problems from a broad range of diverse disciplines: Astronomy and Astrophysics, Geophysics, Medical and Molecular Imaging, Non Destructive Evaluation, Particle and Quantum Physics, Physical and Chemical Measurement Techniques, Economics and Econometrics.

MaxEnt 2014's special interest was Geometrical Sciences of Information/Information Geometry and their link with classical subjects of MaxEnt workshops which are Entropy, Maximum Entropy and Bayesian inference in sciences and engineering. The focus was more on using these concepts in generic Inverse problems, multidimensional and multi components Time Series Analysis and Spectral Estimation, Deconvolution and Source Separation, Segmentation, Classification and Pattern Recognition, X-ray, Diffractive, Diffusive and Quantum Tomographic Imaging.
Specifically, MaxEnt 2014’s technical program had covered topics and highlights in the domain of “Geometric Science of Information” including Information Geometry Manifolds of structured data/information and their advanced applications. These topics addressed inter-relations between different mathematical domains like shape spaces (geometric statistics on manifolds and Lie groups, deformations in shape space), probability/optimization and algorithms on manifolds (structured matrix manifold, structured data/Information), relational and discrete metric spaces (graph metrics, distance geometry, relational analysis), computational and hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning.

In MaxEnt 2014, we had 8 Tutorials:

- Modern Probability Theory by Kevin H. Knuth
- The Basics of Information Geometry by Ariel Caticha
- Voronoi diagrams in information geometry by Franck Nielsen
- Foundations and Geometry by John Skilling
- Uncertainty quantification for computer model by Udo V. Toussaint
- Geometric Structures Induced From Divergence Functions by Jun Zhang
- Koszul Information Geometry and Souriau Lie Group Thermodynamics by Frédéric Barbaresco
- Bayesian and Information Geometry in signal processing by Ali Mohammad-Djafari,

and 4 keynote presentations:

- On the Structure of Entropy by Prof. Mikhail GROMOV (Abel Prize, IHES, Bures-sur-Yvette, France);
- Topological forms of information by Prof. Daniel BENNEQUIN (member of l'Institut Mathématique de Jussieu, Denis Diderot University, Paris, France);
- The entropy-based quantum metric” by Prof. Roger BALIAN (Member of French Academy of Sciences, Scientific Consultant of CEA, France)
- Duhem’s abstract thermodynamics” by Prof. Stefano BORDONI (associate professor of logic, philosophy and history of science, Bologna University, Italy).
We would like to acknowledge all the Scientific Committee members, all the local organizing committee members, all the chairmen and participants for their hard work in evaluating submissions. We also give our thanks to the authors and co-authors, for their tremendous effort and scientific contribution. Thanks to Flore Manier who insured the secretariat of the workshop. We would like to thank in particular Mircea Dumitru for all his efforts during the workshop for helping the participants, for co-organizing with Nicolas Gac the reviewing process and for his editorial and proceedings edition works after the workshop.

General chairs of MaxEnt 2014
Ali Mohammad-Djafari
Frédéric Barbaresco
General chairs of MaxEnt 2014

Ali Mohammad-Djafari
Research Director at CNRS
Laboratoire des signaux et systèmes (L2S)
CNRS-SUPELEC-UNIV PARIS SUD
3 rue Joliot-Curie, 91192 Gif-sur-Yvette

Frédéric BARBARESCO
SEE/SMF MaxEnt General Chair
President of SEE Club ISIC
Ingénierie des Systèmes d'Information et de Communications
(https://www.see.asso.fr/ct-isi)
SEE Emeritus Member, Ampere Medal 2007
Aymé Poirson Prize 2014 from French Academy of Sciences
Senior Scientist & Advanced Studies Manager, Thales Air Systems

ABOUT SEE
SEE (Société de l’Electricité, de l’Electronique et des TIC – Society for Electricity, Electronics and ICT) is a nonprofit scientific and technical organization mainly active in France and by extension in French-speaking countries. It aims at gathering and animating a community of persons and organizations concerned by Science and Technologies in the fields of Energy, Electronics and Communications to foster the progress of both theoretical approaches in these fields and new applications in the main sectors of Economy (Energetic transition, new Transportation challenges, Health and silver Economy, Digital life, etc.). The two main vectors of action of SEE are the organization of S&T events (like MAXENT) and the publication of 2 periodic reviews (REE and 3EI). SEE has strong actions shared with “sister” Societies like IEEE.

Alain BRENAC
SEE General Secretary
SEE Emeritus Member
MaxEnt 2014 keynote speakers

Prof. Mikhail Gromov
Abel Prize, IHES,
Bures-sur-Yvette, France

On the Structure of Entropy

Abstract: Mathematics is about "interesting structures". What make a structure interesting is an abundance of interesting problems; we study a structure by solving these problems. The worlds of science, as well as of mathematics itself, is abundant with gems (germs?) of simple beautiful ideas. When and how may such an idea direct you toward beautiful mathematics? I present in this talk a 20th century mathematician's perspective on Boltzmann's idea of entropy.

Biography: Mikhail Leonidovich Gromov. A French–Russian mathematician. He studied in Leningrad University where he was a student of Vladimir Rokhlin. He has been working on the Riemannian Geometry, Geometric PDE, Symplectic Geometry, Geometric Theory of Groups and also on mathematical formalizations of ideas coming from biology, psychology and linguistic.

Prof. Daniel Bennequin
Denis Diderot University,
Paris, France

Topological forms of information

Abstract: This talk will present recent joint works with Pierre Baudot, where we propose a general definition of categories of informations, and study a natural cohomology for associated information quantities, and homotopical derived notions. Entropies of Shannon, Kullback and Von Neumann, appear as first fundamental classes for classical and quantum setting respectively. The decomposition of entropy in higher mutual information functions appears as an homotopical structure, and generates a new kind
of topology. Possible applications to the study of large statistical data and dynamics of neuronal systems will be mentioned.

Biography: Born 3 January 1952. Graduated from Ecole Normale Supérieure, he has defended his PhD in 1982 with Alain Chenciner at Paris VII University (Doctorat d'Etat, Entrelacements et équations de Pfaff). He was Professor at Strasbourg University and was member of Bourbaki. He is currently a Professor at Denis Diderot University and a member of l'Institut Mathématique de Jussieu. He has made many major contributions to contact geometry during the 1980's and was initiator of Contact Topology with Yakov Eliashberg. During the years 1990, he worked with his students and colleagues in Strasbourg, on integrable systems and geometrical structures of Mathematical Physics. Since 2000 he has been working in Neuroscience (mainly in LPPA directed by A.Berthoz, C-d-F, Paris); he made contributions to the study of geometrical invariance in human movements duration, dynamical structure of vestibular end sensors, organization of vestibular information flow, eye movements preparation, and gaze functions during locomotion.

Prof. Roger Balian

French Academy of Sciences Member, Scientific Consultant of CEA

The entropy-based quantum metric

Abstract: The von Neumann entropy $S(\hat{D})$ generates in the space of quantum density matrices \hat{D} the Riemannian metric $ds^2 = -d^2S(\hat{D})$, which is physically founded and which characterizes the amount of quantum information lost by mixing \hat{D} and $\hat{D} + d\hat{D}$. A rich geometric structure is thereby implemented in quantum mechanics. It includes a canonical mapping between the spaces of states and of observables, which involves the Legendre transform of $S(\hat{D})$. The Kubo scalar product is recovered within the space of observables. Applications are given to equilibrium and non-equilibrium quantum statistical mechanics. There the formalism is specialized to the relevant space of observables and to the associated reduced states issued from the maximum entropy criterion, which result from the exact states through an orthogonal projection. Von Neumann’s entropy specializes into a relevant entropy. Comparison is made with other metrics. The Riemannian properties of the metric $ds^2 = -d^2S(\hat{D})$ are derived. The curvature arises from the non-Abelian nature of quantum mechanics; its general expression and its explicit form for q-bits are given.

Biography: Roger Balian has been working at the "Institut de Physique Théorique" of Saclay (CEA), which he has directed (1979-1987). He was also Professor of Statistical Physics at Ecole Polytechnique (1972-1998), and Director of the "Ecole d'Eté de Physique Théorique des Houches" (1972-1980). His research works have addressed various topics, often related to statistical physics: superfluid Helium 3, signal theory, information/entropy, waves and complex trajectories, foundations of quantum mechanics, Casimir effect, quantum liquids, nuclear structure, gauge theories, distribution of galaxies.
Duhem’s abstract thermodynamics.

Abstract: In the second half of the 19th century, two different traditions of research emerged from Clausius’ thermodynamics. Maxwell and Boltzmann pursued the integration of thermodynamics with the kinetic theory of gases, whereas others relied on a macroscopic and more abstract approach, which set aside specific mechanical models. Massieu, Gibbs, and Helmholtz exploited the structural analogy between mechanics and thermodynamics, the young Planck and J.J. Thomson aimed at filling the gap between thermodynamics and the theory of elasticity, and Oettingen developed a dual mathematical structure for heat and work. Starting from 1891, Pierre Duhem put forward the most original and systematic reinterpretation of abstract thermodynamics, and at the same time the boldest upgrade of Analytical mechanics. He developed and transformed the second tradition: his design of a generalized mechanics based on thermodynamics led to an astonishing mathematical unification between physics and chemistry. Purely mechanical phenomena and chemical reactions represented the opposite poles in Duhem’s Energetics.

Biography: He graduated in physics and received a PhD in History of science and then a PhD in Philosophy. He has recently gained a qualification as associate professor of Logic, philosophy and history of science. He has published papers and books on the history of science, and in particular history of physics. He has given seminars and lectures in some Italian universities and at the Max-Planck-Institut für Wissenschaftsgeschichte in Berlin. He has lectured in History of physics, History of science, and Mathematics.
Tutorial abstracts

1. Modern Probability Theory - Kevin H. Knuth

A theory of logical inference should be all-encompassing, applying to any subject about which inferences are to be made. This includes problems ranging from the early applications of games of chance, to modern applications involving astronomy, biology, chemistry, geology, jurisprudence, physics, signal processing, sociology, and even quantum mechanics. This paper focuses on how the theory of inference has evolved in recent history: expanding in scope, solidifying its foundations, deepening its insights, and growing in calculational power.

2. The Basics of Information Geometry - Ariel Caticha

A main concern of any theory of inference is to pick a probability distribution from a set of candidates and this immediately raises many questions. What if we had picked a neighboring distribution? What difference would it make? What makes two distributions similar? To what extent can we distinguish one distribution from another? Are there quantitative measures of distinguishability? The goal of this tutorial is to address such questions by introducing methods of geometry. More specifically the goal will be to introduce a notion of “distance” between two probability distributions.

A parametric family of probability distributions forms a statistical manifold, namely, a space in which each point represents a probability distribution. Generic manifolds do not come with a pre-installed notion of distance; such additional structure has to be purchased separately in the form of a metric tensor. Statistical manifolds are, however, an exception: a theorem due to N. Ćencov (1981) states that up to an overall scale factor there is only one metric that takes into account the fact that these are not distances between simple structureless dots but distances between probability distributions.

To educate our intuition I will briefly sketch a couple of derivations of the information metric and provide a couple of examples. I will not develop the subject in all its possibilities but I will emphasize one specific result. Having a notion of distance means we have a notion of volume and this in turn implies that there is a unique and objective notion of a distribution that is uniform over the space of parameters—equal volumes are assigned equal probabilities. Whether such uniform distributions are maximally non-informative, or whether they define ignorance, or whether they reflect the actual prior beliefs of any rational agent, are all important issues but they are quite beside the specific point to be made here: that these distributions are uniform and this is not a matter of subjective judgment but of objective mathematical proof.
3. Voronoi diagrams in information geometry - Franck Nielsen

Divergence functions, which are traditionally viewed as a bi-variate function on some manifold M, are here viewed as functions on the cross-manifold MxM which generate a statistical structure (a Riemannian metric plus a pair of torsion-free conjugate connections) along its diagonal manifold. Imposing compatibility conditions allow us to define a divergence function that is “proper”. Further conditions can be imposed so that the cross-manifold may admit a complex representation, linking the divergence function to the “potential” on MxM. For the family of divergence functions induced by a convex function (Zhang, 2004), it is shown that they are proper and their Kahler potentials are given exactly by the inducing convex function. These results highlight the “reference-representational biduality” in Information Geometry.

4. Foundations and Geometry - John Skilling

Probability theory has a solid foundation based on elementary symmetries, nowadays refined to associativity augmented with either commutativity or order. Few workers now contest the sum and product rules of standard probability calculus (often called "Bayesian" although there's no rational alternative and a unique form needs no adjective). The practice of inference is understood and agreed. Yet pure inference is not the end of the story. We may wish to simplify a distribution, or aggregate several into a single representative, in a minimally damaging way. For such purposes, we wish to know how far one probability distribution is from another, so that we can define what we mean by minimal damage.

Over the years, many candidate distances have been proposed, used, and generalised to cover measures (distributions that can have any total) and even to positive matrices. On these distances, geometries have been constructed. Their very multiplicity, though, to say nothing of their ad hoc production, indicates that none has been found wholly satisfactory. There is a reason for that.

The reason is that there is only one connection that allows data from arbitrary partitions of the coordinate space to be combined consistently. That connection is the unique information

\[H(p; q) = \pi \log \pi /\pi q \]

known to statisticians as the Kullback-Leibler. And H is asymmetric,

\[H(p; q) \neq H(q; p). \]

The asymmetry is both central and obvious. It can't be evaded. To pass from distribution \(q = (1/2 ; 1/2) \) to \(p = (1; 0) \) takes one bit of information (which might tell us that a coin was "heads"). But the reverse passage from \((1; 0) \) representing a coin known to be "heads" to \((1/2 ; 1/2) \) is impossible because "tails" is supposedly known to be false. It follows that probability distributions do not form a metric space. Consequently, all geometries must fail. More precisely, any proposal based on a symmetric distance \(l(p; q) = l(q; p) \) must be opposed to the uniqueness of H and will fall foul of elementary criteria, thereby being open to counter-example. Specifically, the popular claim that the Fisher metric \(g = \nabla \nabla \) defines generally applicable geodesic paths and lengths, with associated density \(\sqrt{p \, |g|} \), is to be resisted because it contradicts the foundation of H itself. 150 years ago, Riemann ditched Euclid. Perhaps it is time to ditch Riemann.
5. Uncertainty quantification for computer model - Udo V. Toussaint

The quantification of uncertainty for complex simulations is of increasing importance as well as a significant challenge. Bayesian and non-Bayesian probabilistic uncertainty quantification methods like polynomial chaos (PC) expansion methods or Gaussian processes have found increasing use over the recent years. This contribution describes the use of Gaussian processes and collocation methods for the propagation of uncertainty in computational models using illustrative examples as well as real-world problems. In addition the existing challenges like phase-transitions are outlined.

6. Geometric Structures Induced From Divergence Functions - Jun Zhang

Divergence functions are generalizations of cross-entropy; they characterize (non-symmetric) proximity of pairs of points of a vector space or smooth manifold in general. As surrogate to the symmetric metric function, divergence functions play important roles in statistical inference, machine learning, image processing, optimization, etc. This talk will review the various geometric structures induced from a divergence function defined on a manifold. Most importantly, a Riemannian metric with a pair of torsion-free affine connections can be induced on the manifold; this is the so-called “statistical structure” in Information Geometry. Additional structures may emerge depending on the functional form of the divergence. A general family of divergence functions can be constructed based on a smooth and strictly convex function, which unifies the various known families. Such divergence functions results in a manifold equipped with a pair of bi-orthogonal coordinates, and therefore Hessian structure, reflecting “reference-representation biduality”, and an equiaffine structure such that parallel volume forms exist. Computational advantages of this convex-based divergence functions will be discussed.

7. Koszul Information Geometry and Souriau Lie Group Thermodynamics

Frédéric Barbaresco

The Koszul-Vinberg Characteristic Function (KVCF) is a dense knot in important mathematical fields such as Hessian Geometry, Kählerian Geometry, Affine Differential Geometry. This paper develops KVCF as the foundation of Information Geometry, transverse concept in Thermodynamics, in Statistical Physics and in Probability. From general KVCF definition, the paper defines Koszul Entropy, that coincides with the Legendre transform of minus the logarithm of KVCF (their gradients defining mutually inverse diffeomorphisms). These dual functions are compared by analogy in thermodynamic with dual Massieu-Duhem potentials. Hessian of minus the KVCF logarithm provides a non-arbitrary Riemannian metric for Information Geometry. We will observe the fundamental property that barycenter of Koszul Entropy is equal to Koszul entropy of barycenter. We present then a generalization of the characteristic function by physicist Jean-Marie Souriau in statistical physics, introducing the concept of co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. We will compare moment map with the dual coordinate in Koszul model (barycenter where entropy is maximum) and give a vector valued definition of Maximum Entropy. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric Temperature, with values in the Lie algebra of the dynamical group, interpreted as a space-
time vector (a vector valued temperature of Planck), giving to the metric tensor a null Lie derivative. Information Fisher metric appears as the opposite of the derivative of Moment map by geometric temperature, equivalent to a Geometric Capacity. We will synthetize the analogies between Koszul and Souriau models where Information Geometry is considered as a particular case of Koszul Hessian Geometry. Information Geometry metric is then characterized by invariances, by automorphisms of the convex cone or by Dynamic groups. We conclude, interpreting Legendre transform as Fourier transform in (Min,+) algebra, with new definition of Entropy given by the following relation: Entropy = Fourier(Min,+) ° Log ° Laplace(+X).

8. Bayesian and Information Geometry in signal processing

Ali Mohammad-Djafari

The main object of this tutorial article is first to review the main inference tools using Bayesian approach, Entropy, Information theory and their corresponding geometries.

This review is focused mainly on the ways these tools have been used in signal and image processing. After a short introduction of different quantities related to the Bayes rule, the entropy and the maximum entropy principle, we will study their use in different fields of data and signal processing such as: source separation, model order selection, spectral estimation and, finally, general linear inverse problems.