Nonparametric Information Geometry

Session: Algebraic/Infinite dimensional/Banach Information Manifolds

Chair: Giovanni Pistone

August 28, 2013
Talks

• Asymptotically Efficient Estimators for Algebraic Statistical Manifolds. Kei Kobayashi and Henry P. Wynn

• Infinite-Dimensional Manifolds of Finite-Entropy Probability Measures. Nigel J. Newton

• Invariant geometric structures on statistical models. Hông Văn Lê

• The Δ_2-Condition and ϕ-Families of Probability Distributions. Rui F. Vigelis and Charles C. Cavalcante

• A Riemannian Geometry in the q-Exponential Banach Manifold Induced by q-Divergences. G. Loaiza and H.R. Quiceno

Definition

A k-integrable parametrized measure model is a quadruple (M, Ω, μ, p), where M is a smooth Banach manifold and p a map from the manifold M to the set $\mathcal{M}_+(\omega, \mu)$ of all finite measures on Ω which are equivalent to μ, provided with the L^1-topology, such that

1. the real function on $M \ni x \mapsto \bar{p}(x, \omega)$ is Gateaux-differentiable for almost all ω, $\bar{p} = dp/d\mu$.

2. for all $1 \leq h \leq k$ and all continuous vector field V on M the random variable $\omega \mapsto \partial_V \bar{p}(x, \omega)$ belongs to $L^h(\Omega, p(x))$ and the function $x \mapsto \| \partial_V \bar{p}(x, \omega) \|_{L^h(\Omega, p(x))}$ is continuous on M.