Tessellabilities, Reversibilities, and Decomposabilities of Polytopes
— A Survey —

École nationale supérieure des mines de Paris
Paris, August 28, 2013
Jin Akiyama: Tokyo University of Science
Ikuro Sato: Miyagi Cancer Center
Hyunwoo Seong: The University of Tokyo
Tokyo, Japan
1. P_1-TILES AND P_2-TILES
A P_1-tile is a polygon which tiles the plane with translations only.
Two families of convex P_1-tiles:
(1) parallelograms and
(2) hexagons with three pairs of opposite sides parallel and of the same lengths (P_1-hexagons).
A 3-dimensional P_1-tile is a polyhedron which tiles the space with translations only.

Five families of **convex** 3-dimensional P_1-tiles (Fedorov):

- F_1: Parallelepiped (PP)
- F_2: Hexagonal Prism (HP)
- F_3: Rhombic Dodecahedron (RD)
- F_4: Elongated Rhombic Dodecahedron (ERD)
- F_5: Truncated Octahedron (TO)
A \(P_2 \)-tile is a polygon which tiles the plane by translations and 180° rotations only.

Theorem A
Every convex \(P_2 \)-tile belongs to one of the following four families:

- **\(F_1 \)**: Triangle
- **\(F_2 \)**: Quadrilateral
- **\(F_3 \)**: \(P_2 \)-pentagon (\(BC \parallel ED \))
- **\(F_4 \)**: \(P_2 \)-hexagon (\(QPH \) (\(AB \parallel ED \) and \(|AB|=|ED| \)))
Determine all **convex** 3-dimensional P_2-tiles, i.e., convex polyhedra each of which tiles the space in P_2-manner. (cf) triangular prism, ...
A net of a convex polyhedron P is defined to be a connected planar object obtained by cutting the surface of P.

An ART (almost regular tetrahedron) is a tetrahedron with four congruent faces.
Theorem B (J.A(2007))
Every net (convex or concave) of an ART tiles the plane in P_2-manner.
Artworks
Artworks
Artworks
2. REVERSIBILITY
Volvox, a kind of green alga known as one of the most simple colonial (= multicellular) organisms, reproduces itself by reversing its interior offspring and its surface.
Theorem C (J.A. (2007))
If a pair of polygons A and B is reversible, then each of them tiles the plane by translations and 180° rotations only (P_2-tiling).

A : red quadrilateral, B: blue triangle
Theorem D (J.A., I. Sato, H. Seong (2013))

For an arbitrary convex P_2-tile P and an arbitrary family F_i ($i=1, 2, 3,$ and 4) of convex P_2-tiles, there exists a polygon $Q \in F_i$ such that the pair P and Q is reversible.
A king in a cage
Spider ⇔ Geisha
A 3-dimensional P_1-tile is said to be **canonical** if it is **convex** and symmetric with respect to each orthogonal axis.
Theorem E (J.A., I. Sato, H. Seong (2011))

For an arbitrary canonical 3-dimensional P_1-tile P and an arbitrary family F_i ($i=1, 2, 3, 4, \text{and } 5$) of canonical 3-dimensional P_1-tiles, there exists a polyhedron $Q \in F_i$ such that the pair P and Q is reversible.
Cube -> Hexagonal Prism

Hexagonal Prism -> Truncated Octahedron

Rhombic Dodecahedron -> Elongated Rhombic Dodecahedron
3. TILINGS AND ATOMS
Pentadron is a convex pentahedron whose net is as follows:

A symmetric pair of pentadra
Tetrapak is a special kind of ART(tetrahedron with four congruent faces) made by pentadra as follows:
Theorem F (J.A.)
A tetrapak tiles the space and its net tiles the plane.

Problem
Determine all convex polyhedra, each of which tiles the space and one of its nets tiles the plane.
Theorem G (J.A, G.Nakamura, I.Sato (2012))
Every convex 3-dimensional P_1-tile (or its affine-stretching transform) can be constructed by copies of a pentadron.
Cube
Hexagonal prism
Truncated octahedron
Rhombic dodecahedron
Elongated rhombic dodecahedron